Quantum Dots and Wide Color Gamut Display Technologies
TABLE OF CONTENTS

- Acronyms: P9
- Companies cited in the report: P10
- Executive Summary: P11
- Noteworthy News for the Past 24 Months: P60
- Glossary & Display Fundamentals: P67
 - Display Resolutions, Substrate Sizes
 - Fundamental of LCDs
- An Introduction to Quantum Dots: P72
 - Composition and Sizes for display Applications
 - Benefits and challenges
 - Protection
 - Electro vs. Photoluminescence
- Quantum Rods: P80
 - Structure
 - Polarization & Light Extraction
 - Absorption and Quenching
 - Quantum Dots vs Quantum Rods
- Nano Platelets: P89
- Quantum Dots Manufacturing: P92
 - Hot Injection
 - Capability
 - Molecular Seeding
 - Graded Alloys
 - Continuous Processes
 - Current Process at leading Producers.
- The Quest for Improved Display Visual Experience: P100
 - Introduction and historic
 - Resolution
 - The “Better Pixel”.
 - The UHD alliance
- High Dynamic Range: P114
 - Overview
 - Viewer’s Preference
 - UHD Alliance Requirements
- Color Gamut: P120
 - Definition
 - The major Color Gamut standards
 - UHD Alliance Requirements
 - How to Achieve BT.2020?
- Color Volumes: P129
 - Why it Matters?
 - Tone Mapping Signal Delivery
 - Conclusion
TABLE OF CONTENTS

- Benefits of Quantum Dots: P136
 - Structure of an LCD display
 - Benefits and challenges of Quantum Dots

- Other Technologies for Wide Color Gamut: P142

- Filters: P143
 - Narrow / Thicker color filters
 - Samsung: CGEF
 - LG: Nano Cell

- Narrowband Phosphors: P152
 - Nitride And Oxynitrides
 - PFS and KSF
 - PFS: Status and limitations
 - The quest for a narrow band green Phosphor
 - Summary

- Perovskites: P164
 - Overview
 - Status
 - Conclusion

- Hybrid Solutions: P169

- MicroLEDs: P171
 - MicroLED Definition and History
 - MicroLED Displays Technology Evolution
 - What is a MicroLED display?
 - MicroLED Display Assembly

- Others: P177
 - Quantum Wells
 - Narrowband RGB LEDs.

- Quantum Dots Implementations in Displays: P180

- Generation 1: QDs in Backlight Unit: P182
 - LCD Backlight units: edge and direct configurations
 - Local dimming schemes
 - Edge configurations
 - Film configuration
 - Status: Edge vs Film
 - QD Film Structure and Requirements
 - Barrier Requirement Evolution
 - Major Barrier Suppliers
 - On-Chip Conversion
TABLE OF CONTENTS

- **Generation 2: QDs as Color Filters (QDCF):**
 - Color filters in Traditional Displays
 - QDCF
 - Challenges
 - In-Cell Polarizers
 - Subtractive vs Additive Process
 - Adoption Drivers and Stoppers
 - Comparative Performance: LCD, OLED, QD Films and QDCF
 - Adoption Drivers and Stoppers
 - Status

- **Generation 3: Electroluminescent QDs:**
 - Leading EL-QD Developers
 - Characteristics
 - Status: QLED Efficiency and Lifetime
 - Manufacturing: Transfer Printing and Inkjet Printing
 - Key OEM Players
 - Potential Benefits of EL-QD vs. OLED
 - Summary

- **Quantum Dots vs. OLED TVs: The Battle Royale:**
 - OLED displays Structures: True RGB & WOLED
 - OLED and QD display comparison
 - Color Volume

- **Wide Color Gamut TV Technology Forecast:**
 - 2017-2022 TV panel volume forecast and size Breakdown
 - Panel Cuts on G8 and G10 Substrates
 - Evolution Of Average Panel Size
 - 2017-2022 Wide Color Gamut Adoption per Panel Size
 - 2017-2022 Wide Color Gamut Technology Breakdown
 - Technology Roadmaps
 - Possible Disruptions to Our Scenario

- **Black Level and contrast**
- **Impact of Viewing Conditions**
- **Pixel Level dimming**
- **MicroLED Backlight**
- **Verdict (2017 Models)**
- **Future Improvements**
- **Price**
- **OLED Capacity**
- **Small Displays**
- **Conclusion**
- **QD and OLED Displays SWOT analysis**

- **Narrow Band Phosphors:**
 - 2017-2022 narrowband phosphors TV forecast

©2017 | www.yole.fr | Quantum Dots and Wide Color Gamut Displays Technologies | Sample
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>OLED:</td>
<td></td>
</tr>
<tr>
<td>• 2017-2022 OLED TV Manufacturing capacity:</td>
<td>P258</td>
</tr>
<tr>
<td>• Impact Of Display Size Product Mix on LG OLED TV Capacity</td>
<td></td>
</tr>
<tr>
<td>• Manufacturing Cost considerations</td>
<td></td>
</tr>
<tr>
<td>• Capacity</td>
<td></td>
</tr>
<tr>
<td>• 2017-2022 OLED TV VOLUME FORECAST</td>
<td></td>
</tr>
<tr>
<td>QD Films:</td>
<td></td>
</tr>
<tr>
<td>• 2017-2022 ASP Cost Breakdown and Forecast</td>
<td>P265</td>
</tr>
<tr>
<td>• 2017-2022 QD film TV Volume Forecast</td>
<td></td>
</tr>
<tr>
<td>• On-Chip QDs</td>
<td></td>
</tr>
<tr>
<td>QDCF:</td>
<td></td>
</tr>
<tr>
<td>• Manufacturing considerations</td>
<td>P273</td>
</tr>
<tr>
<td>• Cost Aspects</td>
<td></td>
</tr>
<tr>
<td>• 2017-2022 Volume Forecast for QD Color Filter TV</td>
<td></td>
</tr>
<tr>
<td>Other WCG Technologies:</td>
<td></td>
</tr>
<tr>
<td>• Absorption Filters</td>
<td></td>
</tr>
<tr>
<td>• MicroLEDs</td>
<td></td>
</tr>
<tr>
<td>• EL-Quantum Dots</td>
<td></td>
</tr>
<tr>
<td>• 2017-2022 TV Volume forecast For Other WCG Technologies</td>
<td></td>
</tr>
<tr>
<td>Hybrid Phosphor + QDs:</td>
<td></td>
</tr>
<tr>
<td>• 2017-2022 Volume Forecast for Hybrid QD/Phosphors TV</td>
<td>P279</td>
</tr>
<tr>
<td>Quantum Dot For Displays Volume and Revenue Forecast:</td>
<td></td>
</tr>
<tr>
<td>• TV:</td>
<td></td>
</tr>
<tr>
<td>• 2017-2022 WCG TV Panel Unit and Surface Forecast</td>
<td>P283</td>
</tr>
<tr>
<td>• 2017-2022 QD Adoption per Panel size</td>
<td></td>
</tr>
<tr>
<td>• 2017-2022 WCG TV Panel Surface Breakdown by Technology</td>
<td></td>
</tr>
<tr>
<td>• ASP Trends and hypothesis</td>
<td></td>
</tr>
<tr>
<td>• 2017-2022 QD Film Revenue Forecast</td>
<td></td>
</tr>
<tr>
<td>• 2017-2022 QD Material Revenue Forecast</td>
<td></td>
</tr>
<tr>
<td>Monitors:</td>
<td></td>
</tr>
<tr>
<td>• Monitor Market: 2017-2022 Units and Panel Surface</td>
<td>P291</td>
</tr>
<tr>
<td>• Adoption Drivers for QDs</td>
<td></td>
</tr>
<tr>
<td>• 2017-2022 QD Films and Material Revenue for Monitors</td>
<td></td>
</tr>
<tr>
<td>Others: Laptops, Tablets, Mobile Phones:</td>
<td></td>
</tr>
<tr>
<td>• OLED and QDs.</td>
<td></td>
</tr>
<tr>
<td>• 2017-2022 QD adoption Forecast</td>
<td></td>
</tr>
<tr>
<td>• 2017-2022 QD Films and Material Revenue</td>
<td></td>
</tr>
<tr>
<td>• Smartphones: Overview and OLED Capacity Evolution</td>
<td></td>
</tr>
<tr>
<td>• 2017-2022 Smartphone Display Technology Forecast</td>
<td></td>
</tr>
</tbody>
</table>

©2017 | www.yole.fr | Quantum Dots and Wide Color Gamut Displays Technologies | Sample
TABLE OF CONTENTS

• Cadmium-Based and Cadmium Free QDs: P305
 • Environmental Regulations: RoHS
 • Alternatives to Cadmium
 • Performance Comparisons
 • RoHS compliant Solutions
 • RoHS for QD Filters and EL-QDs.
 • 2017-2022 QD Type Panel Surface Breakdown
 • 2017-2022 QD Type Revenue Breakdown

• Competitive Landscape and Supply Chain: P320
 • Overview
 • Tier-1 Players
 • Focus On Samsung Supply Chain
 • Nanosys Company Overview & Ecosystem
 • Nanoco company Overview & Ecosystem
 • Tier-2 Players
 • Quantum Materials Corp
 • Focus On China
 • Najing Technology Corporation
 • China Quantum Dot Ecosystem
 • Tier-3 Players
 • Supply and Demand Aspects

• Transfer of Value with The Different Designs
 • Annex OLED Display Structure and Key Technologies: P345
 • Yole company Presentation: P352
Eric Virey is a Senior Market and Technology Analyst at Yole Développement. Eric is a daily contributor to the development of LED, OLED, and Displays activities at Yole, with a large collection of market and technology reports as well as multiple custom consulting projects: business strategy, identification of investments or acquisition targets, due diligences (buy/sell side), market and technology analysis, cost modelling, technology scouting, etc. Thanks to its deep knowledge of the LED/OLED and displays related industries, Eric has spoken in more than 30 industry conferences worldwide over the last 5 years. He has been interviewed and quoted by leading media over the world.

Previously Eric has held various R&D, engineering, manufacturing and business development positions with Fortune 500 Company Saint-Gobain in France and the United States.

Dr Eric Virey holds a Ph-D in Optoelectronics from the National Polytechnic Institute of Grenoble. Eric is also author / co-author of multiple reports (examples below) and contributed to various custom projects.

- LED Packaging
- LED Front End Manufacturing
- III-V Epitaxy
- Bulk GaN
- GaN on Silicon
- Status of the LED Industry
- Sapphire Market & Applications
- Phosphors and Quantum Dots
- Organic TFTs
- MicroLED Displays
The report provides an extensive review of Quantum Dots and other Wide Color Gamut technologies for displays.

The report does not cover non-display applications of Quantum Dots (photovoltaic, biology, imaging...)

©2017 | www.yole.fr | Quantum Dots and Wide Color Gamut Displays Technologies | Sample
OBJECTIVE OF THE REPORT

• Understand the Current Status of Wide Color Gamut (WCG) Display Technologies:
 • What is driving WCG and High dynamic Range (HDR)
 • Which technologies can be used?
 • The OLED vs LCD battle who’s winning?
 • Display panel unit forecast for each WCG technology

• Focus on Quantum Dot technologies:
 • The different types of QDs: Cd-based and Cd-free, Quantum rods, Platelets..
 • Manufacturing technologies
 • Understand the 3 generations of QD displays: Backlight color converter (Film, on-chip), Color filter, Electroluminescent QDs
 • Impact of environmental regulations.
 • Detailed forecast: unit shipments per display size, application, types of QDs, types of designs (QD films, QDCF, Hybrids…)

• Competitive Landscape and Supply chain
 • Identify key players in technology development and manufacturing.
 • Supply chain overview.
REPORT METHODOLOGY

Market forecast methodology

Market segmentation methodology

USES
- Variant
- Quasi segments

CLIENTS
- Commercial key success factors behaviour and competitor behaviour matrices

APPLICATIONS
- Segments

BEHAVIOUR
REPORT METHODOLOGY

Technology analysis methodology

- Define the key parameters
- Understand the requested specifications per parameter and application
- Define the competing technologies and the potential evolutions of the technologies
- Define the roadblocks and challenges to be overcome
- Establish the technology roadmaps and maps
- Experts discussions

Information collection

- Analysts’ processing to answer your needs and questionings on market size, positioning, technical challenges...
- Trade shows, stand visits, and participation
- Analysis of the presentations, websites, publications, white papers...
- Ordering of materials, equipment, devices
- Designers
- System designers
- DoSAT
ACRONYMS

- **AMOLED**: Active Matrix OLED
- **a-Si**: Amorphous Silicon (TFT)
- **BLU**: Backlight Unit
- **CapEx**: Capital Expenditure
- **CF**: Color Filters
- **CGEF**: color Gamut Enhancement Film (Samsung)
- **CRT**: Cathod Ray Tube
- **EL-QD**: Electro-luminescent Quantum Dot
- **EOTF**: Electro-Optical Transfer Function
- **EQE**: External Quantum Efficiency
- **ETL**: Electron Transport Layer
- **FHD**: Full High Definition (1920 x 1080)
- **FMM**: Fine Metal Mask
- **FOV**: Field OfView
- **FWHM**: Full Width at Half Maximum
- **HIL**: Hole Injection Layer
- **HD**: High Definition
- **HDR**: High Dynamic Range
- **HTL**: Hole Transport Layer
- **IGZO**: Indium Gallium Zinc Oxide (TFT)
- **ITO**: Indium tin Oxide
- **LCD**: Liquid Crystal Display
- **LED**: Light Emitting Diode
- **LTPS**: Low Temperature Polysilicon
- **NTSC**: National Television System Committee
- **OEM**: Original Equipment Manufacturer
- **OLED**: Organic Light emitting Diode
- **OTR**: Oxygen Transmission Rate
- **PFS**: Potassium Fluoride Silicon (phosphor)
- **PPD**: Pixel Per Degree
- **PPI**: Pixel Per Inch
- **QD**: Quantum Dots
- **QDCF**: Quantum Dot Color Filter
- **QDEF™**: Quantum Dots Enhancement Film (Nanosys)
- **QHD**: Quad High Definition (2560x1400 to 3440x1440)
- **QY**: Quantum Yield
- **RGB**: Red Green Blue
- **RoHS**: Restriction of Hazardous Substances.
- **SDR**: Standard Dynamic Range
- **SID**: Society For Information display
- **TFT**: Thin Film Transistor.
- **UHD**: Ultra High Definition
- **WCG**: Wide Color Gamut
- **WOLED**: White OLED
- **WVTR**: Water Vapor Transmission Rate
- **YAG**: Yttrium Aluminum Garnet (phosphor)
COMPANIES CITED IN THE REPORT

3M (US), Acer (TW), Amazon (US), American Elements (US), AOC (TW), Apple (US), ASUS (TW), AU Optronics (TW), Avantama (CH), BASF Venture Capital (DE), BenQ (TW), BOE (CN), Brunel University (UK), CANDots (DE), CEC Panda (CN), Changhong (CN), Chiefway (TW), Chunghwa Picture Tubes (TW), Citizen (JP), Crystalplex (US), CSOT (CN), Cyrium Technologies (CA), Daejoo (KR), Dai Nippon Printing (JP), Denka (JP), Dolby (US), Dotz Nano (US), Dow (US), Eco Flux (KR), Efun (TW), Everdisplay (CN), Everlight (TW), Exciton (CN), Foxconn (TW), GE / Current powered by GE (US), GLOTEC (KR), Grundig (DE), Hannstar (TW), Hansol Chemical (KR), Hisense (CN), Hitachi Chemical (JP), HKC (CN), Huawei (CN), I-Component (KR), Innolux (TW), Intematix (US), Irrilliant (US), Japan display (JP), JOLED (JP), Jufei Opto (CN), Juhua (CN), Kateeva (US), KDX (CN), KIST (KR), Kodak (US), Kolon (KR), Konica Minolta (JP), Konka (CN), Kyulux (JP), Kyung Hee University (KR), LeEco (CN), Lextar (TW), LG Chem (KR), LG Display (KR), LG Electronics (KR), LMS (KR), Loewe (DE), Luminisyn (US), Merck (DE), Mesolight (US), Mitsubishi Chemical (JP), Mitsui Tochelio (JP), MNTech (KR), Najing Tech (CN), Nanoco (UK), Nanophotonica (US), Nanosquare (KR), Nanosys (US), Nationstar (CN), Navillum Technologies (US), Nexdot (FR), NHK (JP), Nichia (JP), Nitto Denko (JP), NS Materials (JP), Ocean Nanotech (US), Osram (DE), Pacific Light Technologies (US), Panasonic (JP), Philips (NL), PixelDisplay (US), PlasmaChem (DE), Poly Optoelectronics (CN), QD Vision (US), Qlight Nanotech (IL), Quantum Materials Corp (US), Quantum Technology Group (US), Refond (CN), Royole (CN), Sakai display (JP), Samsung (KR), Sangbo (KR), Seiki (CN), Seoul National University (KR), Sharp (JP), Shinwha (KR), SKC Haas (KR), Skyworth (CN), Sony (JP), Storedot (IL), Strem chemical (US), Suijing Opto (CN), SUSTech (CN), Taiwan Nanocrystals (TW), Tapex (KR), TCL (CN), Technicolor (FR), TEL (JP), Tianma (CN), Tongfang (CN), Toray (JP), Toshiba (JP), Toyoda Gosei (JP), TPY (CN), Truly (CN), Ubi QD (US), Unity Opto (TW), University of Florida (US), Verlase (US), Visionox (CN), Vitriflex (US), Vizio (CN), VP dynamics (TW), Wah Hong (TW), Wooree (KR), Zhonghuan Quantum (CN).
LCD displays consist primarily of two sheets of polarizers and a cell of 2 glass plates with liquid crystals sandwiched between them.

Grooves are defined on the glass plates to force the crystals to align in a specific direction. Crystals in contact with the top plate are oriented at 90° compared to the bottom plate. In between the plates, the crystals continuously rotate to match each surface orientation.

When a light polarized in the same direction as the crystals enter on one side, the light polarization rotates smoothly with the crystals and exit on the other side. If it matches the orientation of the exit polarizer, the light will go through: the pixel is “on”

By applying an electric field to the crystals, the liquid crystals untwist and the polarization of the light exiting does not match that of the exit polarizer → the pixel appears black.
HIGH DYNAMIC RANGE

- The best 2017 consumer LCD TV delivers XX Nits while the best OLED peak at XX Nits.
- The 10,000 peak brightness recommended by Dolby is equivalent to looking directly at a fluorescent tube (very bright but not painful to look at). On the black side, 0.0001 nits is very dark but can be seen by the human eye after a minute or two in a completely dark room.

UHD Alliance dynamic range standards for consumer displays exceeds that of digital cinema.

UHDA “OLED” standard: less than XX black and more than XX peak

UHDA “LCD” standard: less than XX black and more than XX peak

Best available 2017 QD-LCD (Samsung Q9): XX black to XX peak

Cinema (movie theatre): XX to XX
ADVANTAGES FOR DISPLAY: POLARIZATION

• The emission is strongly polarized linearly in the plane that contains the long axis of the rod. The polarization ratio \([1]\) of a single rod can reach up to XX%.

• If the QR orientation in a conversion film could be controlled so as to features rods all aligned in the same direction, the resulting overall polarized emission would strongly reduce absorption from the first polarization filter in the LCD structure, thereby significantly improving the energy efficiency of the system.

[1] Defined as the ratio of the difference of each polarization intensity divided by the total intensity: \(\frac{I_{//} - I_{\perp}}{I_{//} + I_{\perp}}\)
MAJOR COLOR GAMUT IN THE CIE 1931 AND 1976 SPACES

* the ACES API standards make use of “imaginary colors” and pokes out of the color spaces (the ACES AP0 that will be used for encoding features an even broader gamut exceeding 100% of the CIE color space)
The SUHD series introduced at the CES in January 2015 was Samsung’s first range of TV with enhanced color gamut and brightness. The first models to hit the market a month later were using quantum dots films in the backlight.

However, at the time the cost of quantum dots films was still high (~ $XX for a 55” TV) due to the low environmental stability of the QDs which required expensive moisture and oxygen barrier (~$XX/TV).

To reduce cost, Samsung collaborated with XXX to develop a notch filter film based on organic molecules. The film, called “Color Gamut Enhancement Film” (CGEF) provided extra absorption in the yellow part of the spectrum to enhance saturation of the green primary from the white LEDs.
In 2014, the PFS: Mn$^{4+}$ phosphor (also known as “KSF”) entered the market. This material, developed by GE, exhibits very narrow emission bands at 613, 631, 636 and 648 nm with FWHM in the 3-4 nm range. The strongest emission at 631 nm is almost ideally positioned for BT.2020 coverage (630 nm primary).

By combining a green oxynitride phosphor with PFS, it is possible to achieve up to XX% NTSC coverage[1] and increased display efficiency with standard color filters. Higher values are possible with more selective filters, although at the expense of lower efficiency.

[1] in CIE 1931. Up to XX% in CIE 1976

PFS further improves performance over nitride red phosphors.

Comparison of Nitride and PFS wide color gamut LEDs (illustration: Yole, gamut and efficiency data: Sharp 2016)
COLOR FILTERS IN TRADITIONAL DISPLAYS

• In traditional LCD displays, white light constituted of the 3 primaries emerges from the liquid crystal cell and enters the color filters.

• Roughly 2/3rd of that total light is therefore absorbed by the filters at each subpixels, leading to very low overall efficiency of an already optically complex display stack.

• The overall optical efficiency of an LCD display is typically only about XX%.
• In standard LC displays, the liquid crystal cells is constituted by the TFT glass on the bottom and the color filter substrate on the top: the two structures are assembled together with spacers and a sealant before being filled up with the liquid crystals.

• In the cell, the liquid crystals align on each plate thanks to structures or “grooves” created on each surface, either by mechanical action (rubbing a cloth in one direction) or more elaborated methods (ion beams, photo-alignment, PSA etc.).

• This surface structuring is usually performed either on the ITO electrode if present[1] or, in most cases on a polyimide (PI) layer added at the surface of the color filters.

• In the new structure, the polarizer must be inserted into the cell, and receive the pattern to align the liquid crystal. This poses a variety of challenges:
 • Polarizer materials can withstand temperature up to 90-100° C but curing the PI layer requires > 200° C baking.
 • Polarizers have rougher surfaces than the PI coating.

[1] for In Plane Switching (IPS) LCD panels, both electrodes are on the TFT glass.
While these individual LEDs can also be turned off individually, their limited quantity (a few hundreds at best) causes at least some light bleed around the object.

The effect is more pronounced when bright objects much smaller than the individual dimming zones must be displayed against a very dark backdrop, for example, fireworks or starlight on a dark sky.

To limit this halo effect, LCD image processor will typically reduce the luminance in the area containing both the dark background and the super bright image so the effect is a peak luminance that is actually lower than what the TV can theoretically deliver.

Pixel level dimming could be done with LCD by stacking up two LC cells (one in the backlight, one in the traditional LC cell. However, this dramatically reduces brightness, efficiency and increase costs. This solutions is therefore only used in some professional display used in video editing.

Another promising technology to improve LCD local contrast is microLED based backlights (next pages).
QD-based solution are expected to dominate WCG technology through the period and be featured in XX% of WCG panels in 2022.
• With high efficiency, good stability, a well positioned center wavelength and a very narrowband emission, PFS has gained a prominent position in the display industry.

• Easy “on-chip” implementation when combined with green β-SiAlON offers a cost efficient, Cd-free drop-in replacement solution compatible with any existing LCD display with up to 120 Hz refresh rate.

• As a result, we expect phosphor solutions to retain a significant market share in entry-level to mid-range WCG TVs of all sizes.

• However, QD films cost decrease and performance increase on a regular basis. Unless a narrow band green phosphor enters the market, the performance gap between phosphors and QD films is expected to keep widening. Higher performance QD-CF are also set to enter the market. We therefore expect pure phosphor solutions to lose market share on the high end portions of the market.

In 2017, PFS is featured in XX% of WCG TVs. This share will decrease to XX% by 2022 and QD cost decrease and performance keep increasing.
2017-2022 QD FILM ASP COST BREAKDOWN AND FORECAST

• Barrier costs in QD films have dropped rapidly since 2015, allowing rapid film cost reductions.

• Further reduction is expected as air stable QDs are developed allowing barriers with simpler structures. Ultimately, it is expected that the barrier could consist in 1 or 2 layers of simple food grade barrier.

• In addition, a growing number of barrier suppliers are entering the market, increasing competition.

• The pressure on QD manufacturers is also significant: display OEM expect QD suppliers to deliver ever improving performance and stability at lower prices.

• Increasing competition with the entrance of Chinese players as well as improving manufacturing techniques could reduce material cost to below $XX/m² by the end of the forecasting period.

• Combined with lower barrier cost, volume effects and increased competition that will pressure margins, we expect the price of QD film to decrease to ~$XX/m² by 2022.
• Overall QD adoption in monitors will reach XX% by 2022. The total surface of QD-based panels for monitors is anticipated to grow at a XX% CAGR, increasing from XX millions of m² in 2017 to XX millions by 2022.

• QDs will be deployed exclusively as films due to the higher cost of QD color Filters (QDCF) and limited incentives to deploy the technology on the monitor market where OLED competition is not as strong as in TVs.

QD adoption will increase rapidly in high performance monitor but remain low overall.
RoHS ENVIRONMENTAL REGULATIONS

- Cadmium is a restricted substance in most countries due to potential adverse health and environmental impact. The European Restriction of Hazardous Substances (RoHS) limits the cadmium content in devices or components used in consumer electronic products to less than 100 ppm (0.01%) per weight. Other countries or organizations also have restrictions on Cd. For example, the IEEE 1680 standard also limits cadmium to <100 ppm and recommends < 50 ppm as good environmental practice.

- The restrictions apply to each homogeneous material in the product. This means that the limit does not apply to the weight of the finished product, or even to a component, but to any single substance that could (theoretically) be separated mechanically—for example, the sheath on a cable or the tinning on a component lead.

- In the case of a display, the 100 ppm limit therefore applies to the QD optic (tube) or to the QD containing film (not even including the film barrier) used to convert the blue light from LEDs into white light.

Cadmium concentration in any individual component or sub-component is restricted to < 100 ppm weight.
Discover more related reports within our bundles here.
As TV makers struggle to trigger replacement cycles, Wide Color Gamut (WCG) and High Dynamic Range (HDR) and their notable picture quality improvements are the next growth drivers for the industry. Various technologies are competing to deliver those features. In the short and mid-term, the best-positioned ones are OLED and the well-established, dominant, LCD technology supercharged with narrow-band phosphor LEDs or quantum dot (QD) color converters in the backlight unit.

Quantum Dots enable drastic enhancements of display color gamut. They do so with high efficiency, giving display makers headroom to increase brightness, contrast and gamut without increasing power consumption.

Their most common implementation is as color conversion films located in the LCD backlight unit. QDs in this form are drop-in solutions that can be easily deployed on all sizes of displays without any process change or capital expenditure (CapEx) required by display makers. QDs therefore enable the LCD industry to boost the performance of its products without major investment. This contrasts with OLEDs, which require building multibillion-dollar dedicated fabs. However QDs don't solve some LCD shortcomings. They still lag in terms of response times, black levels, viewing angles. Also, LCDs can't deliver pixel-level dimming, the strongest selling point for OLED displays. In the future, QDs could substitute for LCD color filters. Unlike films, this configuration requires some process changes in LCD manufacturing. However it would double the display efficiency, further improve color gamut and provide viewing angles similar to OLED. In the longer term, Electroluminescent QDs (EL-QD) could deliver OLED-like characteristics and performance, with improved brightness and stability.

LG Display is currently the only OLED TV panel manufacturer. The company announced that it will stop investing in LCD and build two new OLED TV manufacturing lines in Korea and China, slated to start production in late 2019. Cost and technology barriers to entry are high, and few other companies will be able to manufacture OLED TV panels in that timeframe. Unless OLED printing technologies progress fast enough to enable cost efficient manufacturing of large, full RGB displays, OLED TV adoption will therefore remain capacity-constrained to less than 12 million units per year until 2022.
QDs will take advantage of this window of opportunity to capture the lion’s share of the WCG TV market. Rapidly improving performance and decreasing cost enables adoption to spread into mid-range, sub-$1000 models. Display makers will use QDs to keep extracting more value from existing LCD manufacturing. For the long term however, many are hedging their bets and looking at both RGB printed OLED and EL-QDs. In the mid-term, QD Color Filter (QDCF) configurations represent an attractive opportunity to close the gap with OLED in term of viewing angles and widen it in term of gamut and efficiency. QDCF however requires some LCD manufacturing process changes. Although moderate compared to a new OLED fab, not every LCD maker will want to commit the required CapEx or even develop the technology.

Narrowband phosphors deliver performance close to QDs at much lower cost. The performance gap, however, is widening as QDs keep improving and the cost gap decreases. Phosphors will therefore lose market share in the premium segments, but overall volumes will grow significantly thanks to increasing penetration in mid-range products. We also expect narrowband phosphors to be the dominant solution for smaller WCG LCD displays.

In the longer term, both OLED and QD-enhanced LCD could face competition from new, disruptive technologies such as electroluminescent QDs or even microLEDs, which could drive a potential paradigm shift in self-emissive display technology. Other technological innovations could also disrupt the QD market. For example commercialization of a narrow-band green phosphor could eliminate the performance gap between phosphors and QD films and enable a more cost-effective solution.

AS DEMAND INCREASES, MORE PLAYERS WILL JOIN IN

In 2017, demand for QDs is dominated by Samsung. After the demise of pioneer QD-Vision, whose intellectual property was acquired by Samsung in 2016, Nanosys and Hansol are the only QD manufacturers supplying high volumes in 2017. This could change rapidly however as many more TV makers adopt QDs.

Nanoco and its new film partner Wah Hong seem closer than ever to scoring a design win. Quantum Materials in the US and NS Materials in Japan are other credible outsiders. In the fast-growing Chinese display industry, local QD maker Najing Tech is partnering with key manufacturers, accelerating the development of QD films and EL-QD and preparing to ramp up manufacturing.

Many more companies are investing at various levels of the supply chain to get their share of the material, film or barrier opportunities. 2016 saw a major IP battle between Nanosys and QD Vision. As new companies attempt to get their share of the pie, we expect established leaders to become increasingly aggressive in leveraging IP to block new entrants.

On the environmental front, cadmium (Cd)-free QDs dominate the market. Combined with the upcoming availability of fully RoHS compliant solutions such as Nanosys’ Hyperion or possibly hybrid green QD/narrowband red phosphors (PSF), this has prompted the European Commission not to renew a Restriction of Hazardous Substances (RoHS) Directive exemption that temporarily allowed higher cadmium content (a decision that should be ratified by the Parliament later this year). Cd-free solutions will therefore keep dominating the market, but will coexist with Cd-based yet RoHS compliant solutions. Most manufacturers, however, will stay away from any Cd-containing compositions.
COMPANIES CITED IN THE REPORT (non exhaustive list)

JP (US), Acer (TW), Apple (US), ASUS (TW), AU Optronics (TW), Avantama (CH), BOE (CN), CANDots (DE), CEC Panda (CN), Changhong (CN), Chonghwa Picture Tubes (TW), CrysTrex (US), CSGT (CN), Daewoo (KR), Dai Nippon Printing (JP), Denko (JP), Dolly (US), Dow (US), Eco Flux (KR), Efun (TW), exciton (CN), Foxconn (TW), GE (US), GLOTEC (KR), Hannstar (TW), Hansol Chemical (KR), Hisense (CN), Hitachi Chemical (JP), Huawei (CN), I-Component (KR), Innolux (TW), Innometis (US), Japan display (JP), JOLED (JP), Jhua (CN), Kateeva (US), KDX (CN), Kolon (KR), Konka (CN), LeEco (CN), LG Chem (KR), LG Display (KR), LG Electronics (KR), LMS (KR), Luminyi (US), Mereck (DE), Mesolight (US), Mitsubishi Chemical (JP), Mitsu Tocello (JP), MNTech (KR), Nans (US), Nanosys (US), Nanophotons (US), Nanotech (IL), Netsol Denko (JP), NS Materials (JP), Osmar (DE), Pacific Light Technologies (US), Philips (NL), PixelMatters (US), Poly Optoelectronics (CN), QD Vision (US), Qlight Nanotech (IL), Quantum Technology Group (US), Sakai Display (JP), Samsung (KR), Sharp (JP), SKC Haas (KR), Skyworth (CN), Sony(JP), Taiwan Nanocrystals (TW), TCL (CN), TEL (JP), TIANMA (CN), Tongfang (CN), Toray (JP), Toshiba (JP), Toyota Gosei (JP), TPV (CN), Truth (CN), Ubi QD (US), Unis Opto (TW), University of Florida (US), Verlase (US), Visionox (CN), Vintiflex (US), Vizio (CN), VP dynamics (TW), Wah Hong (TW), Wooren (KR), Zhonghuan Quantum (CN) and many more.

TABLE OF CONTENTS (complete content on i-Micronews.com)

Executive summary 11
Glossary and display fundamentals 67
An introduction to Quantum Dots 72
> Composition and sizes for display applications
> Benefits and challenges
> Protection
> Electro vs. photoluminescence
Quantum Rods 80
> Structure
> Polarization and light extraction
> Absorption and quenching
> Quantum Dots vs Quantum Rods
Nano platelets 89
Quantum Dots manufacturing 92
> Hot injection
> Capability
> Molecular seeding
> Graded alloys
> Continuous processes
> Current processes at leading producers
The quest for improved display visual experience 100
Resolution
> The “Better Pixel”
> The UHD alliance
High dynamic range 114
> Viewer preferences
> UHD alliance requirements
Color gamut 120
> Definition
> The major color gamut standards
> UHD alliance requirements
> How to achieve BT.2020?
Color volumes 129
> Why does it matter?
> Tone mapping signal delivery
Benefits of Quantum Dots 136
Other technologies for Wide Color Gamut 142
Filters 143
> Narrow/wideband color filters
> Samsung: CEGEEF
> LG: nano cell
> Narrowband phosphors 152
> Nitride and oxynitrides
> PFS and KSF
> PFS: Status and limitations
> The quest for a narrow-band green phosphor
Perovskites 164
> Overview
> Status
Hybrid solutions 169
MicroLEDs 171
> What is a MicroLED display?
> MicroLED display assembly
Others 177
Quantum Dots implementations in displays 180
Generation 1: QDs in backlight units 182
> LCD backlight units: edge and direct configurations
> Local dimming schemes
> Edge and film configurations
> Status: edge vs film
> QD film structure and requirements
> Barrier requirement evolution
> Major barrier suppliers
> On-Chip conversion
Generation 2: QDs as color filters (QDCF) 196
> Color filters in traditional displays
> QDCF
> Challenges
> In-cell polarizers
> Subtractive vs additive processes
> Adoption drivers and stoppers
> Comparative performance: LCD, QLED, QD films and QDCF
> Adoption drivers and stoppers
Generation 3: Electroluminescent QDs 209
> Leading EL-QD developers
> Characteristics
> Status: QLED efficiency and lifetime
> Manufacturing: transfer printing and inkjet printing
> Key OEM players
> Potential benefits of EL-QD vs. OLED Quantum Dots vs. OLED TVs: The battle royale 228
> OLED displays structures: True RGB & WOLED
> OLED and QD display comparison
> Color volume
> Black Level and contrast
> Impact of viewing conditions
> Pixel level dimming
> MicroLED backlight
> 2017 model verdict
> Future improvements
> Price
> OLED capacity
> Small displays
> QD and OLED displays SWOT analysis
Wide Color Gamut TV technology forecast 247
> 2017-2022 TV panel volume forecast and size breakdown
> Panel cuts on G8 and G10 substrates
> Evolution if average panel size
> 2017-2022 Wide Color Gamut adoption by panel size and technology breakdown
> Technology roadmaps
> Possible disruptions to our scenario
Narrow band phosphors 256
> 2017-2022 narrowband phosphor TV forecast
OLED 258
> 2017-2022 OLED TV manufacturing capacity
> Impact of display size product mix on LG OLED TV capacity
> Manufacturing cost considerations
> Capacity
> 2017-2022 OLED TV volume forecast
QD films 265
> 2017-2022 ASP cost breakdown and forecast
> 2017-2022 QD film TV volume forecast
QD-CDs 273
> Manufacturing considerations
> Cost aspects
> 2017-2022 volume forecast for QD color filter TV Other WCG technologies 278
> Absorption filters
> MicroLEDs
> El-Quantum Dots
> 2017-2022 TV volume forecast for other WCG technologies
> Hybrid Phosphor/QD
Quantum Dot for displays and revenue forecast 383
TV 284
> 2017-2022 WCG TV panel unit and surface forecast
> 2017-2022 QD adoption by panel size
> 2017-2022 WCG TV panel surface breakdown by technology
> ASP trends and hypothesis
> 2017-2022 QD film revenue and material forecast
Monitor 291
> Monitor market: 2017-2022 units and panel surface
> Adoption drivers for QDs
> 2017-2022 QD films and material revenue for monitors
Others: laptops, tablets, mobile phones 297
Cadmium-based and Cadmium free QDs 305
> Environmental regulations: RoHS
> Alternatives to cadmium
> Performance comparisons
> RoHS compliant solutions
> RoHS for QD filters and EL-QDs
> 2017-2022 QD type panel surface and revenue breakdown
Competitive landscape and supply chain 320
> Tier-1 players
> Focus on Samsung supply chain
> Nanosys and Nanoco company overview and ecosystem
> Tier-2 players
> Quantum materials corp
> Focus on China
> Naging Technology corporation
> China quantum dot ecosystem
> Tier-3 players
> Supply and demand aspects
> Transfer of value with the different designs
Annex OLED display structure and key technologies 345
Company presentation 352

MARKET & TECHNOLOGY REPORT

Related reports

- MicroLED Displays
- Phosphors & Quantum Dots 2015: LED Downconverters for Lighting & Displays
Find all our reports on www.i-micronews.com

Author

Dr. Eric Virey serves as a Senior Market and Technology Analyst at Yole Développement (Yole), the “More than Moore” market research and strategy consulting company. Eric is a daily contributor to the development of LED, OLED, and display activities at Yole, with a large collection of market and technology reports as well as multiple custom consulting projects: business strategy, identification of investments or acquisition targets, due diligence (buy/sell side), market and technology analysis, cost modeling, technology scouting, etc. Thanks to its deep knowledge of the LED/OLED and displays related industries, Eric has spoken in more than 30 industry conferences worldwide over the last five years. He has been interviewed and quoted by leading media over the world.

Previously Eric has held various R&D, engineering, manufacturing and business development positions with Fortune 500 Company Saint-Gobain in France and the United States. Dr. Eric Virey holds a PhD in Optoelectronics from the National Polytechnic Institute of Grenoble.
ORDER FORM

Quantum Dots and Wide Color Gamut Display Technologies

BILL TO

Name (Mr/Ms/Dr/Pr):
Job Title:
Company:
Address:
City:
State:
Postcode/Zip:
Country:
*VAT ID Number for EU members:
Tel:
Email:
Date:

PAYMENT

BY CREDIT CARD

☐ Visa ☐ Mastercard ☐ Amex

Name of the Card Holder:
Credit Card Number:
Card Verification Value (3 digits except AMEX: 4 digits):
Expiration date:

BY BANK TRANSFER

BANK INFO: HSBC, 1 place de la Bourse,
F-69002 Lyon, France,
Bank code: 30056, Branch code: 00170
Account No: 0170 200 1565 87,
SWIFT or BIC code: CCFRFRPP,
IBAN: FR76 3005 6001 7001 7020 0156 587

RETURN ORDER BY

• FAX: +33 (0)472 83 01 83
• MAIL: YOLE DÉVELOPPEMENT, Le Quartz,
75 Cours Emile Zola, 69100 Villeurbanne/Lyon - France

SALES CONTACTS

• North America - Steve Laferriere: +13106 008 267
 laferriere@yole.fr
• Europe & RoW - Lizzie Levenez: + 49 15 123 544 182
 levenez@yole.fr
• Japan & Rest of Asia - Takashi Onozawa: +81 3 6869 6970
 onozawa@yole.fr
• Greater China - Mavis Wang: +886 979 336 809
 wang@yole.fr
• Specific inquiries: +33 472 830 180 – info@yole.fr

*One user license means only one person at the company can use the report.

I hereby accept Yole Développement’s Terms and Conditions of Sale(1)
Signature:

(1) Our Terms and Conditions of Sale are available at www.yole.fr/Terms_and_Conditions_of_Sale.aspx
The present document is valid 24 months after its publishing date: August 22, 2017

DESCRIPTION OF ORDER

PRODUCT ORDER - Ref. YDLS17032

Please enter my order for above named report:
☐ One user license*: Euro 5,490
☐ Multi user license: Euro 6,490

- The report will be ready for delivery from August 28, 2017
- For price in dollars, please use the day’s exchange rate. All reports are delivered electronically at payment reception. For French customers, add 20% for VAT

I accept the report under the following conditions:

[] Add VAT:

[] Add shipping costs:

I wish to receive the report by:

☐ Fax:
☐ Mail:

[] I hereby accept Yole Développement’s Terms and Conditions of Sale(1)
Signature:

SALES CONTACTS

• Consulting Services: Jean-Christophe Eloy (eloy@yole.fr)
• Financial Services: Fayçal Khamassi (khamassi@yole.fr)
• Press relations: Sandrine Leroy (leroy@yole.fr)

MEDIAS & EVENTS

• i-Micronews.com, online disruptive technologies website
• @Micronews, weekly e-newsletter
• Communication & webcasts services
• Events: Yole Seminars, Market Briefings...

MORE INFORMATION

Orders can be placed online at www.yole.fr

CONTACTS

About Yole Développement

Founded in 1998, Yole Développement has grown to become a group of companies providing marketing, technology and strategy consulting, media and corporate finance services. With a strong focus on emerging applications using silicon and/or micro manufacturing, the Yole Développement group has expanded to include more than 50 collaborators worldwide covering MEMS, Compound Semiconductors, LED, Displays, Image Sensors, Optoelectronics, Microfluidics & Medical, Advanced Packaging, Manufacturing, Nanomaterials, Power Electronics & Batteries & Energy Management.

The “More than Moore” company Yole and its partners System Plus Consulting, Blumorpho, KnowMade and PISEO support industrial companies, investors and R&D organizations worldwide to help them understand markets and follow technology trends to develop their business.
Yole Développement

Terms and Conditions of Sales

Definitions:
“Acceptance”: Action by which the Buyer accepts the terms and conditions of sale in their entirety. It is done by signing the purchase order which mentions “I hereby accept Yole’s Terms and Conditions of Sale” or “Acknowledgment of Contractual Terms and Conditions”.

“Buyer”: Any business user (i.e. any person acting in the course of its business activities, for its business needs) entering into the following general conditions to the exclusion of consumers acting in their personal interests.

“Contracting Parties” or “Parties”: The Seller on the one hand and the Buyer on the other hand.

“Intellectual Property Rights” (“IPR”) means any right held by the Seller in its Products, including any patents, trademarks, registered designs, models, copyrights, inventions, commercial secrets and know-how, technical information, company or trading names and any other intellectual property rights which are protected by any applicable law in the countries where the Seller is located.

“License” or “Rights” means any right held by the Seller in its Products, including any patents, trademarks, registered designs, models, copyrights, inventions, technical information, company or trading names and any other intellectual property rights which are protected by any applicable law in the countries where the Seller is located.

“Multi-user license” means an unlimited number of users within the company.

“Non-disclosure” or “Confidential” means any information to the Seller, even in case of delayed delivery. The company will get a discount that can vary from 15% to 10%.

“Price”, “invoicing and payment” means a price that may be reevaluated from time to time. The effective price is deemed to be one applicable at the time of the order.

“Product”: Any business user (i.e. any person acting in the course of its business activities, for its business needs) entering into the following general conditions to the exclusion of consumers acting in their personal interests.

“Price” includes all taxes. The prices are expressed to be inclusive of all taxes. The prices may be reevaluated from time to time. The effective price is deemed to be one applicable at the time of the order.

“Primary user license” or “Corporate license” means a program, the report can be used by unlimited users within the company. Subsidiaries and Joint-Ventures are not included.

“Rights” or “Rights held by the Seller in its Products” means any rights held by the Seller in its Products, including any patents, trademarks, registered designs, models, copyrights, inventions, technical information, company or trading names and any other intellectual property rights which are protected by any applicable law in the countries where the Seller is located.

“Sale" means the sale, purchase order which mentions “I hereby accept Yole’s Terms and Conditions of Sale” or “Acknowledgment of Contractual Terms and Conditions”.

“Subsidiary” means a company established for research and development purposes, acting in the interests of the Seller.

“Term and conditions of sale” means the terms and conditions of sale in their entirety. It is done by signing the purchase order which mentions “I hereby accept Yole’s Terms and Conditions of Sale” or “Acknowledgment of Contractual Terms and Conditions”.

“User Registration” means a company or trading names and any other intellectual property rights which are protected by any applicable law in the countries where the Seller is located.

“User” means a business user buying the Products for its behalf, being a business user buying the Products for its behalf, being a business user buying the Products for its behalf, being a business user buying the Products for its behalf, being a business user buying the Products for its behalf, being a business user buying the Products for its behalf.

“Yearly discount” means any effective price is deemed to be one applicable at the time of the order.

1. SCOPE
1.1 The Contracting Parties undertake to observe the following general conditions when agreed by the Buyer and the Seller. ANY ADDITIONAL, DIFFERENT, OR CONFLICTING TERMS AND CONDITIONS IN ANY OTHER DOCUMENTS ISSUED BY THE BUYER AT ANY TIME ARE HEREBY OBJECTED TO BY THE SELLER, SHALL BE WHOLLY INAPPLICABLE TO ANY SALE MADE HEREUNDER AND SHALL NOT BE BINDING IN ANY WAY ON THE SELLER.

2. MAILING OF THE PRODUCTS
2.1 Products are delivered by the Seller: • within 15 months from the order for Products already released; or • within a reasonable time for Products ordered prior to their effective release. In this case, the Seller shall use its best endeavours to inform the Buyer of an indicative release date and the evolution of the work in progress.

2.2 Software is delivered by the Seller to the Buyer can access the report or the employee of the companies in which the Buyer have 100% shares. As a matter of fact, the investor of a company, the joint venture done with a third party etc...cannot access the report and should pay a full license price.

3. LIABILITY
3.1 The Buyer or any other individual or legal person acting on its behalf, being a business user buying the Products for its business activities, shall be solely responsible for choosing the Products and for the use and interpretations he makes of the documents it purchases, of the results he obtains, and of the advice and acts it deduces thereof.

4. Termination
4.1 If the Buyer cancels the order in whole or in part or postpones the date of mailing, the Buyer shall indemnify the Seller for the entire costs that have been incurred as at the date of notification by the Buyer of such delay or cancellation. This may also apply for any other direct or indirect consequential consequences thereof.

5. Governing law and jurisdiction
5.1 Any dispute arising out or linked to these Terms and Conditions shall be settled by the French Commercial Courts of Lyon, which shall have exclusive jurisdiction upon such issues.

6. MISCELLANEOUS
6.1 The Buyer shall not make any warranties, express or implied, including, without limitation, those of sale ability and fitness for a particular purpose, with respect to the Products. Although the Seller shall take all necessary precautions to prevent the infection of viruses, worms, Trojan horses or other codes containing contaminating or destructive properties before making the Products available, the Seller does not guarantee that any Product will be free from infection.
Yole Développement

From Technologies to Market
FIELDS OF EXPERTISE

Yole Développement’s 35+ analysts operate in the following areas:

- MEMS & Sensors
- RF Devices & Techno.
- MedTech
- Manufacturing
- Advanced Packaging
- Advanced Substrates
- Batteries / Energy Management
- Power Electronics
- Displays
- Solid State Lighting (LED, OLED, …)
- Compound Semi.
- Photonics
- Imaging
4 BUSINESS MODELS

- **Consulting and Analysis**
 - Market data & research, marketing analysis
 - Technology analysis
 - Strategy consulting
 - Reverse engineering & costing
 - Patent analysis

- **Financial services**
 - Due diligence
 - Fundraising
 - Maturation of companies
 - IP portfolio management & optimization

- **Reports**
 - Market & technology reports
 - Patent investigation and patent infringement risk analysis
 - Teardowns & reverse costing analysis
 - Cost simulation tool

- **Media**
 - i-Micronews.com website
 - @Micronews e-newsletter
 - Communication & webcast services
 - Events

www.yole.fr

www.i-Micronews.com/reports

www.bmorpho.com
OUR GLOBAL ACTIVITY

40% of our business

30% of our business

30% of our business

Yole Inc.
Seoul
Phoenix

Yole Korea
Tokyo

Greater China office

Hsinchu

HQ in Lyon

Europe office
Frankfurt

Yole Japan

Yole Inc.

Nantes
Paris
Vénissieux

KnowMade
Nice

SYSTEMplus CONSULTING

BULIMORPHO

©2017 | www.yole.fr | About Yole Développement
SERVING THE ENTIRE SUPPLY CHAIN

Integrators and end-users

Device makers

Suppliers: material, equipment, OSAT, foundries...

Financial investors, R&D centers

Our analysts provide market analysis, technology evaluation, and business plan along the entire supply chain.
SERVING MULTIPLE INDUSTRIAL FIELDS

We are working across multiples industries to understand the impact of More-than-Moore technologies from device to system.
Yole Développement publishes a comprehensive collection of market & technology reports and patent analysis in:

- MEMS & Sensors
- RF devices & technologies
- Imaging
- Medical technologies (MedTech)
- Photonics
- Advanced packaging
- Manufacturing
- Advanced substrates
- Power electronics
- Batteries and energy management
- Compound semiconductors
- Solid state lighting
- Displays

You are looking for:

- An analysis of your product market
- A review of your competitors evolution
- An understanding of your manufacturing and production costs
- An understanding of your industry technology roadmap and related IPs
- A clear view on the evolution of the supply chain

The combined team of 60+ experts (PhDs, MBAs, industry veterans…) from Yole Développement, System Plus Consulting and KnowMade, collect information, identify the trends, the challenges, the emerging markets, the competitive environments and turn it into results to give you a complete picture of your industry landscape.

In the past 19 years, we worked on more than 2 000 projects, interacting with technology professional and high level opinion makers from the main players of the industry.

Every year, Yole Développement, System Plus Consulting and Knowmade publish +120 reports. Gain full benefit from our Bundle and Annual Subscription offers.
OUR 2017 REPORTS PLANNING (1/2)

MARKET AND TECHNOLOGY REPORTS by Yole Développement

- **MEMS & SENSORS**
 - Acoustic MEMS and Audio Solutions 2017
 - 3D Imaging & Sensing 2017
 - Microspectrometers Markets and Applications 2017
 - Status of the MEMS Industry 2017*
 - MEMS & Sensors for Automotive 2017
 - High End Inertial Sensors for Defense and Industrial Applications 2017*
 - Magnetic Sensors Market and Technologies 2017
 - Sensors and Sensing Modules for Smart Homes and Buildings 2017
 - Sensing and Display for AR/VR/MR 2017
 - MEMS Packaging 2017
 - Fingerprint Sensor Applications and Technologies - Consumer Market Focus 2017

- **RF DEVICES AND TECHNOLOGIES**
 - RF Front End Modules and Components for Cellphones 2017
 - Advanced RF SiP for Cellphones 2017
 - 5G and Beyond (Vol 1): Impact on RF Industry, from Infrastructure to Terminals 2017
 - 5G and Beyond (Vol 2): RF Materials Platform, from Infrastructure to Terminals 2017
 - RF Technologies for Automotive Applications 2017
 - GaN and Si LDMOS Market and Technology Trends for RF Power 2017

- **MANUFACTURING**
 - Glass Substrate Manufacturing 2017
 - Equipment & Materials for Fan Out Technology 2017
 - Equipment and Materials for 3D TSV Applications 2017
 - Emerging Non Volatile Memories 2017*

- **MEDTECH**
 - Status of the Microfluidics Industry 2017
 - Solid State Medical Imaging 2017
 - Connected Medical Devices: the Internet of Medical Things 2017
 - Sensors for Medical Robotics 2017
 - Artificial Organs: Market & Technology Analysis 2017
 - Organs-on-a Chip 2017

- **ADVANCED PACKAGING**
 - Advanced Substrates Overview 2017
 - Status of the Advanced Packaging Industry 2017
 - Fan Out Packaging: Market & Technology Trends 2017*
 - 3D Business Update: Market & Technology Trends 2017*
 - Advanced QFN: Market & Technology Trends 2017**
 - Inspection and Metrology for Advanced Packaging Platform 2017**
 - MEMS Packaging 2017
 - Advanced Packaging for Memories 2017
 - Advanced RF SiP for Cellphones 2017
 - Power Packaging Market and Technology Trends 2017
 - Embedded Die Packaging: Technologies and Markets Trends 2017

- **IMAGING & OPTOELECTRONICS**
 - 3D Imaging & Sensing 2017
 - Status of the CMOS Image Sensor Industry 2017*
 - Camera Module for Consumer and Automotive Applications 2017*
 - Uncooled Infrared Imaging Technology & Market Trends 2017*
 - Solid State Medical Imaging 2017

- **BATTERY AND ENERGY MANAGEMENT**
 - Status of Battery Industry for Stationary, Automotive and Consumer Applications

*2016 version still available / **To be confirmed

©2017 | www.yole.fr | About Yole Développement
OUR 2017 REPORTS PLANNING (2/2)

- **POWER ELECTRONICS**
 - Status of Power Electronics Industry 2017*
 - Silicon Power Mosfet: Market and Technology Trends 2017
 - IGBT Market and Technology Trends 2017
 - Power Packaging Market and Technology Trends 2017
 - Power SiC 2017: Materials, Devices, and Applications*
 - Power GaN 2017: Materials, Devices, and Applications*
 - Materials Market Opportunities for Cellphone Thermal Management (Battery Cooling, Fast Charging, Data Processing, Battery Cooling, etc.) 2017
 - Gate Driver Market and Technology Trends 2017
 - Power Management ICs Market Quarterly Update 2017
 - Power Electronics for Electrical Aircraft, Rail and Buses 2017**
 - Thermal Management for LED and Power 2017

- **COMPOUND SEMICONDUCTORS**
 - Power SiC 2017: Materials, Devices, and Applications*
 - Power GaN 2017: Materials, Devices, and Applications*
 - GaN and Si LDMOS Market and Technology Trends for RF Power 2017
 - 5G and Beyond (Vol 2): RF Materials Platform, from Infrastructure to Terminals 2017
 - Bulk GaN Substrate Market 2017

- **DISPLAYS**
 - MicroLED Displays 2017
 - Display for Augmented Reality, Virtual Reality and Mixed Reality 2017
 - Quantum Dots for Display Applications 2017
 - Phosphors & Quantum Dots 2017 - LED Downconverters for Lighting & Displays
 - Organic Thin Film Transistor 2016: Flexible Displays and Other Applications
 - Automotive Lighting 2017 - Technology, Industry and Market Trends

*2016 version still available / **To be confirmed

- **SOLID STATE LIGHTING**
 - UV LEDs 2017 - Technology, Manufacturing and Application Trends*
 - Automotive Lighting 2017 - Technology, Industry and Market Trends*
 - Active Imaging and Lidar 2017 (Vol 2) - IR Lighting**
 - LED Lighting Module 2017 - Technology, Industry and Market Trends
 - IR LEDs and Lasers - Technology Applications and Industry Trends 2017
 - Phosphors & Quantum Dots 2017 - LED Downconverters for Lighting & Displays
 - MicroLED Displays 2017
 - CSP LED Lighting Module 2017
 - LED Packaging 2017
 - Thermal Management for LED and Power 2017

- **PATENT ANALYSIS** by Knowmade
 - Patent Licensing Companies in the Semiconductor Market - Patent Litigation
 - Risk and Potential Targets 2017
 - MEMS Microphone: Patent Landscape Analysis 2017
 - MEMS Microphone: Knowles’ Patent Portfolio Analysis 2017
 - Microbolometer: Patents Used in Products 2017
 - Microfluidic Technologies for Diagnostic Applications Patent Landscape 2017
 - Micropumps: Patent Landscape Analysis 2017
 - GaN Technology: Top-100 IP Profiles 2017
 - MicroLEDs: Patent Landscape Analysis 2017
 - Uncooled Infrared Imaging: Patent Landscape Analysis 2017
 - 3D Monolithic Memory: Patent Landscape Analysis 2017

- **TEARDOWN & REVERSE COSTING** by System Plus Consulting
 More than 60 teardowns and reverse costing analysis and cost simulation tools to be published in 2017.

©2017 | www.yole.fr | About Yole Développement
OUR 2016 PUBLISHED REPORTS LIST (1/2)

MARKET AND TECHNOLOGY REPORTS by Yole Développement

- **MEMS & SENSORS**
 - Gas Sensors Technology and Market 2016
 - Status of the MEMs Industry 2016
 - Sensors for Cellphones and Tablets 2016
 - Market and Technology Trends of Inkjet Printheads 2016
 - Sensors for Biometry and Recognition 2016
 - Silicon Photonics 2016

- **IMAGING & OPTOELECTRONICS**
 - Status of the CMOS Image Sensor Industry 2016
 - Uncooled Infrared Imaging Technology & Market Trends 2016
 - Imaging Technologies for Automotive 2016
 - Sensors for Drones & Robots: Market Opportunities and Technology Evolution 2016

- **MEDTECH**
 - BioMEMS 2016
 - Point of Care Testing 2016: Application of Microfluidic Technologies

- **ADVANCED PACKAGING**
 - Embedded Die Packaging: Technology and Market Trends 2017
 - 2.5D & 3D IC TSV Interconnect for Advanced Packaging: Business Update 2016
 - Fan-In Packaging: Business update 2016
 - Status and Prospects for the Advanced Packaging Industry in China 2016

- **MANUFACTURING**
 - Thin Wafer Processing and Dicing Equipment Market 2016
 - Emerging Non Volatile Memories 2016

- **COMPOUND SEMICONDUCTORS**
 - Power GaN 2016: Epitaxy and Devices, Applications and Technology Trends
 - Sapphire Applications & Market 2016: from LED to Consumer Electronics
 - Power SiC 2016: Materials, Devices, Modules, and Applications

- **LED**
 - UV LED Technology, Manufacturing and Applications Trends 2016
 - Thermal Management Technology and Market Perspectives in Power Electronics and LEDs 2017
 - Organic Thin Film Transistor 2016: Flexible Displays and Other Applications
 - Sapphire Applications & Market 2016: from LED to Consumer Electronics
 - LED Packaging 2017: Market, Technology and Industry Landscape

- **POWER ELECTRONICS**
 - Power Electronics for EV/HEV 2016: Market, Innovations and Trends
 - Status of Power Electronics Industry 2016
 - Passive Components Technologies and Market Trends for Power Electronics 2016
 - Power SiC 2016: Materials, Devices, Modules, and Applications
 - Power GaN 2016: Epitaxy and Devices, Applications, and Technology Trends
 - Inverter Technologies Trends & Market Expectations 2016
 - Opportunities for Power Electronics in Renewable Electricity Generation 2016
 - Thermal Management Technology and Market Perspectives in Power Electronics and LEDs 2017

- **BATTERY AND ENERGY MANAGEMENT**
 - Beyond Li-ion Batteries: Present and Future Li-ion Technology Challengers 2016
 - Stationary Storage and Automotive Li-ion Battery Packs 2016
 - Opportunities for Power Electronics in Renewable Electricity Generation 2016

©2017 | www.yole.fr | About Yole Développement
ORE 2016 PUBLISHED REPORTS LIST (2/2)

PATENT ANALYSIS by Knowmade
- Microbattery Patent Landscape Analysis
- Miniaturized Gas Sensors Patent Landscape Analysis
- 3D Cell Culture Technologies Patent Landscape
- Phosphors and QDs for LED Applications Patent Landscape
- TSV Stacked Memory Patent Landscape
- Fan-Out Wafer Level Packaging Patent Landscape Analysis

TEARDOWN & REVERSE COSTING by System Plus Consulting
More than 45 teardowns and reverse costing analysis and cost simulation tools published in 2016.

MORE INFORMATION
- All the published reports from the Yole Group of Companies are available on our website www.i-Micronews.com.
- Ask for our Bundle and Annual Subscription offers: With our bundle offer, you choose the number of reports you are interested in and select the related offer. You then have up to 12 months to select the required reports from the Yole Développement, System Plus Consulting and KnowMade offering. Pay once and receive the reports automatically (multi-user format). Contact your sales team according to your location (see the last slide).
About Micronews Media

To meet the growing demand for market, technological and business information, Micronews Media integrates several tools able to reach each individual contact within its network. We will ensure you benefit from this.

ONLINE

- @Micronews e-newsletter
- i-Micronews.com
- i-Micronews.jp.com
- FreeFullPDF.com

Unique, cost-effective ways to reach global audiences.

- Online display advertising campaigns are great strategies for improving your product/brand visibility.
- They are also an efficient way to adapt with the demands of the times and to evolve an effective marketing plan and strategy.

Benefit from the i-Micronews.com traffic generated by the 8,500+ monthly visitors, the 11,500+ weekly readers of @Micronews e-newsletter

ONSITE

Brand visibility, networking opportunities

- Today’s technology makes it easy for us to communicate regularly, quickly, and inexpensively – but when understanding each other is critical, there is no substitute for meeting in-person.
- Events are the best way to exchange ideas with your customers, partners, prospects while increasing your brand/product visibility.

Seven main events planned for 2017 on different topics to attract 140 attendees on average

IN PERSON

Targeted audience involvement equals clear, concise perception of your company’s message.

- Webcasts are a smart, innovative way of communicating to a wider targeted audience.
- Webcasts create very useful, dynamic reference material for attendees and also for absentees, thanks to the recording technology.

Gain new leads for your business from an average of 300 registrants per webcast

Contacts

Camille Veyrier (veyrier@yole.fr) and Clotilde Fabre (fabre@yole.fr), Marketing & Communication Project Managers.
CONTACT INFORMATION

- **CONSULTING AND SPECIFIC ANALYSIS**
 - North America: Steve LaFerriere, Director of Northern America Business Development
 Email: lferriere@yole.fr – +1 31 06 008 267
 - Japan & Rest of Asia: Takashi Onozawa, General Manager, Asia Business Development
 Email: onozawa@yole.fr – +81 3 4405 9204
 - Greater China: Mavis Wang, Director of Greater China Business Development
 Email: wang@yole.fr – +886 979 336 809
 - RoW: Jean-Christophe Eloy, CEO & President, Yole Développement
 Email eloy@yole.fr - +33 4 72 83 01 80

- **REPORT BUSINESS**
 - North America: Steve LaFerriere, Director of Northern America Business Development
 Email: lferriere@yole.fr – +1 31 06 008 267
 - Europe: Lizzie Levenez, EMEA Business Development Manager
 Email: levenez@yole.fr – +49 15 123 544 182
 - Rest of Asia: Takashi Onozawa, General Manager, Asia Business Development
 Email: onozawa@yole.fr – +81 3 4405 9204
 - Japan & Asia: Miho Othake, Account Manager
 Email: othake@yole.fr - +81 3 4405 9204
 - Greater China: Mavis Wang, Director of Greater China Business Development
 Email: wang@yole.fr – +886 979 336 809

- **FINANCIAL SERVICES**
 - Jean-Christophe Eloy, CEO & President
 Email: eloy@yole.fr - +33 4 72 83 01 80

- **GENERAL**
 - Public Relations: leroy@yole.fr - +33 4 72 83 01 89
 - Email: info@yole.fr - +33 4 72 83 01 80