Thinning Equipment Technology and Market Trends for Semiconductor Devices

Market and Technology Report 2020
The main objectives of this report are as follows:

- To identify and describe which wafers can be classified as "thinned wafers".
- To update the business status of the markets for wafer thinning and thinning equipment & materials technologies.
- To analyze the key market drivers, benefits, and challenges of thinning technologies, by application.
- To describe the different existing technologies, their trends and roadmaps.
- To analyze the supply chain and technologies landscape for thinning equipment & materials.
- To provide a market forecast for thinning equipment & materials in the coming years, and an estimate of future trends.

The thinning markets are studied from the following angles:

- State-of-the-art technologies and trends
- Applications and drivers of thinning technologies
- Market value in terms of equipment and materials
- Industrial supply chain & value chain
Yole’s market forecast model is based on the matching of several sources:

Comparison with existing data
- Monitoring of corporate communication
- Using other market research data
- Yole analysis (consensus or not)

Comparison with prior Yole reports
- Recursive improvement of dataset
- Customer feedback

Top-to-bottom approach
- Aggregate of market forecasts @ System level

Bottom-up approach
- Ecosystem analysis
- Aggregate of all players’ revenue @ System level

Preexisting information

Market
- Volume (in Munits)
- ASP (in $)
- Revenue (in $M)

Top-to-bottom approach
- Aggregate of market forecast @ Semiconductor device level

Bottom-up approach
- Ecosystem analysis
- Aggregate of key players’ revenues @ Semiconductor device level

Secondary data
- Press releases
- Industry organization reports
- Conferences

Primary data
- Reverse costing
- Patent analysis
- Annual reports
- Direct interviews

Information Aggregation

Semiconductor foundry activity
- Capacity investments and equipment needs
Amandine PIZZAGALLI

Amandine Pizzagalli oversees the equipment and materials fields for the Advanced Packaging and Manufacturing team at Yole Développement. She graduated as an engineer in Electronics, specializing in semiconductors and nanoelectronic technologies. Prior to Yole, Amandine worked for Air Liquide, with an emphasis on CVD and ALD processes for semiconductor applications.

Contact: amandine.pizzagalli@yole.fr

Gaël GIUSTI

Gaël Giusti, PhD. Is a Technology & Market Analyst specialized in Semiconductor Manufacturing as well as Equipment & Materials at Yole Développement (Yole). As part of Yole’s Semiconductor & Software division, Gaël’s expertise is focused on thin film growth and related applications, equipment, materials, and manufacturing processes. He is daily involved in the production of technology & market reports and custom consulting projects. Prior to Yole, Gaël served as an R&D engineer at Sil’Tronix Silicon Technologies for five years, in charge of upscaling a CVD process to develop epitaxial AlN thin film on sapphire for RF applications. He also worked on transparent conducting thin films for optoelectronics applications as a post-doctoral researcher at LMGP (Grenoble, France). Gaël holds a master’s degree from ENSICAEN (Caen, France) as well as a PhD in Materials Science from the University of Birmingham (UK).

Contact: gael.giusti@yole.fr
COMPANIES CITED IN THIS REPORT

TABLE OF CONTENTS

Part 1/3

- Glossary
- Key definitions & terminology
- Report objectives
- Report scope
- Report methodology
- About the authors
- Companies cited in this report
- SLIDE UPDATE
- Who should be interested in this report
- Yole Group related reports
- The three-page summary

Executive Summary 24

Introduction & Context 66
- Definitions & terminology
- Report scope
- General process flow
- Why (back)grinding, lapping, polishing, and planarizing?
- Semiconductor and “more than Moore” devices
- Semiconductor manufacturing processes
- Applications requiring thinning process
- Thinning processes applied in the semiconductor field

- Wafer (back)thinning technologies 79
 - Market drivers & dynamics
 - Wafer thinning trends 2019 - 2025

- Thinning equipment & materials’ technologies 92
 - Thinning technology description
 - Consumables integrated in the thinning process
 - Thinning market drivers
 - Equipment side
 - Thinning equipment technologies overview- segmentation
 - Thinning technology requirements, by semiconductor application
 - Thinning equipment technologies - benchmark
 - Materials: CMP slurries
 - CMP slurries technologies overview- segmentation
 - CMP slurries requirements, by semiconductor application
 - One-slide synthesis / application
 - Technologies roadmap
 - Cost analysis

Competitive landscape 123
TABLE OF CONTENTS

Part 2/3

- **Applications requiring wafer thinning**
 - Memory
 - Introduction to memory- segmentation
 - Key technical steps in the memory manufacturing chain
 - Wafer thinning drivers for memory devices
 - General thickness trends
 - Wafer thinning for memory devices – examples of cross-sections
 - Focus on 3D stacked memory
 - Thinning roadmap for memory
 - Thinning equipment technologies
 - Key highlights
 - **MEMS devices**
 - MEMS devices - segmentation
 - Key technical steps in the MEMS manufacturing chain
 - Wafer thinning – drivers for MEMS devices
 - 2019 thinned wafer, by type of MEMS & sensors: general trends
 - 2025 thinned wafer, by type of MEMS & sensors: general trends
 - Wafer thinning for MEMS devices – examples of cross-sections
 - Thinning roadmap for MEMS devices
 - Thinning equipment technologies
 - Key highlights
 - **Power devices**
 - Power devices – segmentation
 - Key technical steps in the power manufacturing chain
 - Power electronics
 - CMOS image sensors
 - CIS segmentation
 - Key technical steps in the MEMS manufacturing chain: focus on BSI
 - Wafer thinning – drivers for CIS devices
 - Wafer thinning for CIS devices – examples of cross-sections
 - Thinning roadmap for CIS devices
 - Thinning equipment technologies
 - Key highlights
 - RF devices
 - RF devices – segmentation
 - Key technical steps in the power manufacturing chain
 - RF devices vs. applications vs. substrate materials
 - Wafer thinning – drivers for power devices
 - Limitations to thinning – substrate absorption
 - Wafer thinning for RF devices – examples of cross-sections
 - Thinning roadmap for RF devices
 - Thinning equipment technologies
 - Key highlights
TABLE OF CONTENTS

Part 3/3

• Solid-state lighting 216
 o Segmentation of solid-state lighting devices

• LED devices 218
 o Key technical steps in the LED manufacturing chain
 o Traditional, mini, and micro LEDs
 o LED devices – segmentation by LED type
 o LED devices – segmentation by wavelength
 o Wafer thinning drivers for LEDs
 o Wafer thinning for LEDs – examples of cross-sections
 o Thinning roadmap for LEDs
 o Key highlights

• Laser diode 228
 o General landscape
 o Key technical steps in the VCSEL manufacturing chain
 o LASER diode – segmentation by wavelength
 o Wafer thinning drivers for VCSELs
 o Wafer thinning for VCSELs – examples of cross-sections
 o Thinning roadmap for laser diode
 o Thinning equipment technologies for laser diode devices
 o Key highlights

• Market forecast 238
 o Thinned wafer market forecast
 o Thinning equipment market forecast
 o Market share

• Conclusions 267
• Outlook 274
• APPENDIX
• Company presentation
In this report, we will focus on step 3.
THINNING TECHNOLOGIES: FEATURES CAPABILITIES

Architecture

(Double Side) Lapping

Coarse Grinding
Fine Grinding

(CMP) polishing

Wet etching
Dry etching

Mechanical flexibility

Thinning Technologies

Dies/Devices

Thin films

Thin wafers
Si, SiC, GaAs, InP, LiTaO₃, LiNBO₃

Ultrathin wafers Si

Standard wafers
Si, Al₂O₃

Die Device

Thin film

Wafer

Thin films

Ultrathin wafers Si

Wet etching
Dry etching

Wafers/layer thickness

500 µm
350 µm
100 µm
50 µm
1 µm
0.5 µm
0.01 µm

TSV reveal

Report focus

APPLICATIONS REQUIRING THINNING PROCESS

Memory
- Laser diode*
 - Edge emitting laser
 - VCSEL

LED
- Traditional, microLED, miniLED
- GaAs LED based devices (IR LED, ROY LED)
- GaN LED based devices (UV LED, blue/green LED)

RF
- Power amplifiers, antenna switches

Power
- MOSFET
- IGBT
- Bipolar

MEMS detectors/Actuators

CMOS Image Sensors
Thinning Processes Applied in the Semiconductor Field

From front-end to back-end assembly

<table>
<thead>
<tr>
<th>PROCESSING</th>
<th>PROCESS STEP LEVEL</th>
<th>ROLE</th>
<th>EQUIPMENT TECHNOLOGY</th>
<th>MATERIAL FUNCTION</th>
<th>APPLICATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Removal process</td>
<td>Post-slicing after ingot growth</td>
<td>Thinning</td>
<td>Thickness reduction</td>
<td>Grinding, Lapping</td>
<td>All semiconductor applications</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Planarization</td>
<td>Stress reduction, Defect-free surface</td>
<td>Lapping, CMP</td>
<td></td>
</tr>
<tr>
<td>Layer/Film level</td>
<td>Planarization to remove topography</td>
<td>Planarization</td>
<td>Smooth and planar surface</td>
<td>CMP</td>
<td></td>
</tr>
<tr>
<td>Wafer substrate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Memory & logic, Power HEMT</td>
</tr>
<tr>
<td></td>
<td>Thinning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Miniaturization</td>
<td>Grinding, CMP, Dry</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Electrical performances</td>
<td>Grinding, TAIKO</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MATERIAL FUNCTION
- **Metal Cu, W, Al**
- **Dielectric (Oxide, Polymer)**
- **Silicon**, **SiC**, **Sapphire**, **GaAs**, **Glass**

APPLICATIONS
- Memory & logic
- Power HEMT
- Memory, MEMS, Laser diode, RF, CIS
THINNED WAFERS - DRIVERS AND BENEFITS

- High interconnect density: more sensitive and complex structures
 - Memory & logic
 - Stress relief

- Better electrical performance and thermal management
 - LED
 - IGBT
 - MOSFET
 - Laser diode

- Miniaturization
 - Form factor
 - Reduced package size
 - MEMS
THINNING DRIVERS BY DEVICE

<table>
<thead>
<tr>
<th></th>
<th>Miniaturization, 3D stacking</th>
<th>Thermal management</th>
<th>Higher performance</th>
<th>“Hard” physical limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory and logic</td>
<td>![Checkmark]</td>
<td>![Checkmark]</td>
<td>![Checkmark]</td>
<td>Mechanical support Handling*</td>
</tr>
<tr>
<td>CIS</td>
<td>![Checkmark]</td>
<td>![Checkmark]</td>
<td>![Checkmark]</td>
<td>Mechanical support Handling*</td>
</tr>
<tr>
<td>MEMS</td>
<td>![Checkmark]</td>
<td></td>
<td></td>
<td>Mechanical deformation for wafers < 100 µm</td>
</tr>
<tr>
<td>RF</td>
<td></td>
<td>![Checkmark]</td>
<td></td>
<td>Substrate dielectric loss</td>
</tr>
<tr>
<td>Power</td>
<td></td>
<td>![Checkmark]</td>
<td>![Checkmark] (reduced power consumption)</td>
<td>Substrate dielectric breakdown</td>
</tr>
<tr>
<td>LED (excluding microLED)</td>
<td></td>
<td>![Checkmark]</td>
<td>![Checkmark] (enhanced light extraction)</td>
<td>Mechanical support Handling*</td>
</tr>
<tr>
<td>Laser diode</td>
<td></td>
<td>![Checkmark]</td>
<td>![Checkmark] (for high-power)</td>
<td>Mechanical support Handling*</td>
</tr>
</tbody>
</table>

*Wafer handling during the manufacturing and assembling processes, ESD related issues.
WAFER THINNING TRENDS
2019 vs 2025

<table>
<thead>
<tr>
<th>TODAY (2019)</th>
<th>TOMORROW (2025)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEMS substrates</td>
<td>370–250 µ</td>
</tr>
<tr>
<td>MEMS capping</td>
<td>100–300µ</td>
</tr>
<tr>
<td>ASIC MEMS</td>
<td>100–150µ</td>
</tr>
<tr>
<td>CIS Packaging</td>
<td>140–200µ</td>
</tr>
<tr>
<td>CIS BSI</td>
<td><10 µ (3–5µ)</td>
</tr>
<tr>
<td>Memories</td>
<td>50 µm</td>
</tr>
<tr>
<td>Logic</td>
<td>50µ</td>
</tr>
<tr>
<td>Power Devices</td>
<td>60–110µ (depending on the voltage applied)</td>
</tr>
<tr>
<td>RF Devices</td>
<td>130µ</td>
</tr>
<tr>
<td>LEDs</td>
<td>100µ</td>
</tr>
<tr>
<td>Laser diode</td>
<td>100µ</td>
</tr>
</tbody>
</table>

In general, the thinning trends are down. The magnitude of these downturns depends on the maturity of the technology and on the substrate material used. There is a noticeable exception for power applications whereby a particular packaging technology authorizes a thicker (than today’s conventional thicknesses) substrate to be used.

Transition wire-bond → flip-chip technology
Thinning Wafer by Thickness Range

<table>
<thead>
<tr>
<th>Application</th>
<th>Si/Si</th>
<th>SiC/SiC</th>
<th>GaAs</th>
<th>GaN Active layer</th>
<th>InP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laser diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EELs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VCSEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laser</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LED</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMOS Image Sensor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Application</th>
<th>Si/Si</th>
<th>SiC/SiC</th>
<th>GaAs</th>
<th>GaN Active layer</th>
<th>InP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laser diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EELs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VCSEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laser</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LED</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMOS Image Sensor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Application</th>
<th>Si/Si</th>
<th>SiC/SiC</th>
<th>GaAs</th>
<th>GaN Active layer</th>
<th>InP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laser diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EELs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VCSEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laser</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LED</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMOS Image Sensor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lower volume
TOTAL THINNED WAFER - BREAKDOWN BY THICKNESS RANGE (8-INCH EQUIVALENT)

Total Thinned wafer - Breakdown by Thickness range (8-inch equivalent) for Semiconductor devices

- >200 µm
- 100 µm - 199 µm
- 50-99 µm
- 30-49 µm
- 10-29 µm
- <10 µm

* in 8-inch equivalent wafers volume

2019
~100M

~64M
~26M
~6M
~5M

CAGR₂₀₁₉₋₂₀₂₅: ~>5%

2025
>135M

~ 82M
CAGR: ~+4.5%

~33M
CAGR: ~+4%

~8M
CAGR: ~+7%

~3.5M
CAGR: ~+7%

~3.3M

~9M
CAGR: ~7%

~1.7M
CAGR: ~98%
THINNING PROCESSES VS. WAFER THICKNESS – GENERAL TRENDS

Thickness (µm)/Technology applied

750 µm

- MEMS

~120 µm

- Grinding limitations
- Power devices

50 µm

- CMP limitations
- Memory & Logic

CIS packaging

BSI CIS
THINNING TECHNOLOGIES REQUIRED FOR EACH APPLICATION

<table>
<thead>
<tr>
<th>Thinning technologies vs applications</th>
<th>Memory</th>
<th>MEMS</th>
<th>Power</th>
<th>CMOS Image Sensor</th>
<th>RF</th>
<th>LED</th>
<th>Laser diode diode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grinding</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Standard grinding</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Taiko</td>
<td>✔️</td>
<td></td>
<td></td>
<td></td>
<td>✔️</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polishing</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Chemical mechanical polishing (CMP)</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Wet etching/Dry</td>
<td>✔️</td>
<td></td>
<td></td>
<td></td>
<td>✔️</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OVERALL THINNING EQUIPMENT MARKET IN REVENUE (2019 VS 2025)

Overall thinning equipment market for semiconductor devices (in Revenue)
Breakdown by semiconductor device

Thinning equipment revenue ($M)

- Memory
- Power
- MEMS
- CMOS Image Sensors
- Laser diode
- LED
- RF

2019 2020 2021 2022 2023 2024 2025
Applications requiring wafer thinning

Key technical steps, drivers, limitations, roadmap and real-world examples (cross-sectional views)

Applications covered:
- Memory
- MEMS
- Power
- CIS
- RF
- Lighting
- Laser diodes
MORE SLIDE EXTRACTS

Market shares

2019 THINNING EQUIPMENT MARKET SHARE
Split by equipment vendor

GRINDING AND CMP: EQUIPMENT SUPPLIER OVERVIEW

<table>
<thead>
<tr>
<th>Company name</th>
<th>Grinding</th>
<th>CMP</th>
<th>Cluster (grinding + CMP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory</td>
<td>[Diagram]</td>
<td>[Diagram]</td>
<td>[Diagram]</td>
</tr>
<tr>
<td>MEMS</td>
<td>[Diagram]</td>
<td>[Diagram]</td>
<td>[Diagram]</td>
</tr>
<tr>
<td>Power</td>
<td>[Diagram]</td>
<td>[Diagram]</td>
<td>[Diagram]</td>
</tr>
<tr>
<td>RF</td>
<td>[Diagram]</td>
<td>[Diagram]</td>
<td>[Diagram]</td>
</tr>
<tr>
<td>CIS</td>
<td>[Diagram]</td>
<td>[Diagram]</td>
<td>[Diagram]</td>
</tr>
</tbody>
</table>

THINNING/POLISHING EQUIPMENT MARKET SHARE SUMMARY IN 2019

Non-exhaustive list

Market forecast as well as 2019 market share are included in this report.
Contact our Sales Team for more information.

YOLE GROUP OF COMPANIES RELATED REPORTS & MONITORS

Yole Développement

Epitaxy Growth Equipment for More Than Moore Devices Technology and Market Trends 2020

CMOS Image Sensor Quarterly Market Monitor

Compound Semiconductor Quarterly Market Monitor

NAND & DRAM Quarterly Market Monitors

Status of the MEMS Industry 2019
CONTACTS

REPORTS, MONITORS & TRACKS

India and RoA
Takashi Onozawa - takashi.onozawa@yole.fr
+81 80 4371 4887
Greater China
Mavis Wang - mavis.wang@yole.fr
+86 979 336 809 +86 136 6156 6824
Korea
Peter Ok - peter.ok@yole.fr
+82 10 4089 0233

Japan
Miho Ohtake - miho.ohtake@yole.fr
+81 34 4059 204
Japan and Singapore
Itsuyo Oshiba - itsuyo.oshiba@yole.fr
+81 80 3577 3042
Japan
Toru Hosaka – toru.hosaka@yole.fr
+81 90 1775 3866

FINANCIAL SERVICES
› Jean-Christophe Eloy - eloy@yole.fr
 +33 4 72 83 01 80
› Ivan Donaldson - ivan.donaldson@yole.fr
 +1 208 850 3914

CUSTOM PROJECT SERVICES
› Jérome Azémar, Yole Développement - jerome.azemar@yole.fr - +33 6 27 68 69 33
› Julie Coulon, System Plus Consulting - jcoulon@systemplus.fr - +33 2 72 17 89 85

GENERAL
› Camille Veyrier, Marketing & Communication camille.veyrier@yole.fr - +33 472 83 01 01
› Sandrine Leroy, Public Relations sandrine.leroy@yole.fr - +33 4 72 83 01 89
› General inquiries: info@yole.fr - +33 4 72 83 01 80

Follow us on