Status of Medical Imaging Equipment and Detectors 2020

Market and Technology Report 2020
TABLE OF CONTENTS

- Glossary and definition
- Table of contents
- Report scope / Report methodology
- Companies cited in this report
- What we got right, what we got wrong
- Executive Summary 11
- Context 49
 - Scope of the report
 - Historical perspective
 - Medical imaging landscape
 - Toward hybridization
 - New growth drivers: toward high volume applications
 - Roadmaps by modalities
 - Impact of the COVID-19 pandemic
 - Artificial intelligence in medical imaging
- Market forecasts 76
 - Definitions
 - CAGR vs market size graph
 - Medical imaging market data and forecasts 2015 - 2025 (value and units) at the system level, by modalities
 - Medical imaging market data and forecasts 2015 - 2025 (value and units) at the detector level, by modalities
 - Medical imaging market data and forecasts 2015 - 2025 (value and units) at the detector level, by technology
- Market trends 93
 - For each modalities: X-ray, endoscopy, ultrasound, molecular imaging, OCT and MRI
 - Market drivers, roadmaps and technical requirements
 - System market by applications 2015 - 2024 (value and units)
 - Detector market by applications and technology 2015 - 2024 (value and units)
 - Markets shares at the system level by applications
- Market shares and supply chain 217
 - Mergers and acquisitions
 - Supply chain analysis
 - Detector manufacturer market share, by technology
 - Focus on the Chinese ecosystem
- Technology trends 241
 - Technology description
 - Technology evolution
 - Technologies roadmap
 - Manufacturing process, material
- Conclusion 323
- Yole Group of Companies 325
Marjorie Villien, PhD
As a Technology & Market Analyst, Medical & Industrial Imaging, Marjorie Villien, PhD., is member of the Photonics & Sensing activities group at Yole Développement (Yole).
Marjorie contributes regularly to the development of imaging projects with a dedicated collection of market & technology reports as well as custom consulting services in the medical and industrial fields. She regularly meets with leading imaging companies to identify and understand technology issues, analyze market evolution and ensure the smart combination of technical innovation and industrial application.
Marjorie Villien graduated from Grenoble INP (France) and holds a PhD in physics & medical imaging.
Email: Marjorie.villien@yole.fr

Jérôme Mouly
Jérôme Mouly serves as a Senior Technology & Market Analyst & Business Developer specialized in microtechnologies within the Photonics & Sensing team at Yole Développement (Yole).
Jérôme actively assists and supports the development of strategic projects, working with leading customers of the company. Since 2000, he has also been engaged in more than 100 marketing and technological analyses for industrial groups, start-ups and institutes in the field of MEMS, BioMEMS, wearables & connected medical devices. Through the group’s numerous activities at Yole, Jérôme covers the whole microelectronics supply chain, including manufacturing processes and device development. Jérôme Mouly has a Master of Physics from the University of Lyon (France).
Email: Jerome.mouly@yole.fr

William Watkins, PhD
As a Technology & Market Analyst specialized in Imaging/Materials within the Photonic & Sensing Division at Yole Développement (Yole), William L. Watkins, PhD., is involved in the development of technology & market reports as well as the production of custom consulting projects. Prior to Yole, William worked as a research engineer at Sorbonne University (Paris, France) on the use of nanoparticles in the development of novel inks and pigments. William was awarded a PhD in the field of physics from the Paris Institute of Nanosciences (INSP - Sorbonne University, Paris, France). His research thesis focused on the analysis and development of optical gas sensors using nanoparticles.
Email: William.watkins@yole.fr
GLOSSARY

- APS: Active Pixel Sensor
- AMLCD: Active-Matrix LCD
- a-Se: Amorphous Selenium
- a-Si: Amorphous Silicon
- CsI: Cesium Iodide Scintillator
- BSI: Backside Illumination
- CAGR: Compound Average Growth Rate
- CBCT: Cone Beam Computed Tomography
- CCD: Charge Coupled Device
- CdTe: Cadmium Telluride
- CIS: CMOS Image Sensor
- CMOS: Complementary Metal Oxide Semiconductor
- cMUT: Capacitive Micromachined Ultrasound Transducer
- CT: Computed Tomography
- DQE: Detective Quantum Efficiency
- EM: Electro-Magnetic
- ENT: Ear-Nose-Throat
- FO: Fiber-optic
- FOP: Fiber-optic Plate
- FPD: Flat-Panel Detector
- FSI: Front-Side Illumination
- GI: Gastrointestinal
- IS: Image Sensor
- IVUS: Intra Vascular UltraSound
- LED: Light-Emitting Diode
- MRI: Magnetic Resonance Imaging
- NOTES: Natural Orifice Transluminal Endoscopic Surgery
- OCT: Optical Computed Tomography
- OEM: Original Equipment Manufacturer
- PET: Positron Emission Tomography
- pMUT: Piezoelectric Micromachined Ultrasound Transducer
- RF: Radio frequency
- TDI: Time-Delayed Integration
- TFT: Thin-Film Transistor
- SiPM: Silicon Photomultiplier
- SNR: Signal to Noise Ratio
- SPAD: Single-Photon Avalanche Diode
- SPECT: Single-Photon Emission Computed Tomography
- SPD: Single-Photon Detection
- TSV: Through Silicon Via
COMPANIES CITED IN THIS REPORT

SCOPE OF THE REPORT

Molecular imaging
- SiPM
- CZT
- Photomultiplier tubes

Ultrasound
- Ultrasound transducers
- RF coils

MRI

Endoscopy
- CCD
- CMOS image sensors
- OCT

Ultrasound imaging
- Photodiode arrays

Medical imaging

X-RAYS
- Flat panel displays

Your needs are out of scope of this report?
Contact us for a custom study:
Yole’s market forecast model is based on the matching of several sources:

- Comparison with existing data
- Monitoring of corporate communication
- Using other market research data
- Yole’s analysis (consensus or not)

- Comparison with prior Yole reports
- Recursive improvement of dataset
- Customer feedback

Top-down approach
- Aggregate of market forecasts
 - @ System level

Bottom-up approach
- Ecosystem analysis
 - Aggregate of all players’ revenues
 - @ System level

Market

- Volume (in Munits)
- ASP (in $)
- Revenue (in $M)

Semiconductor foundry activity

- Capacity investments and equipment needs

Preexisting information

Primary data
- Reverse costing
- Patent analysis
- Annual reports
- Direct interviews

Secondary data
- Press releases
- Industry organization reports
- Conferences

Information Aggregation
The Yole Group of Companies, including Yole Développement, System Plus Consulting, Knowmade and PISEO, are pleased to provide you a glimpse of our accumulated knowledge.

Feel free to share our data with your own network, within your presentations, press releases, dedicated articles and more. But before that, contact our Public Relations department to make sure you get up-to-date, licensed materials.

We will be more than happy to give you our latest results and appropriate formats of our approved content.

Your contact: Sandrine Leroy, Dir. Public Relations
Email: leroy@yole.fr
WHAT WE GOT RIGHT, WHAT WE GOT WRONG

- Our market data for reusable endoscopy and capsule endoscopy was correct and we anticipated the arrival of the videoscope.

- We anticipated the arrival of IGZO in the X-ray market as well as the technological change from CCD to CMOS in interventional imaging.

- We anticipated the arrival of SiPM in the molecular imaging market.

- We could not forecast the COVID-19 pandemic and therefore the impact it would have on the global medical imaging business and on the global economy.

- We did not anticipate the adoption of disposable endoscopes to be so rapid (due to regulations).

- We did not anticipate such a rapid arrival of point of care ultrasound and OCT (technological breakthrough).

- Our market data for SPECT was a little bit high, and we have corrected it.

Our 2017 report did not cover MRI, this one does.
HISTORICAL SYNERGIES BETWEEN MODALITIES AND TECHNOLOGIES

Modalities & systems

XIX
- X-Ray apparatus discovered
- Ultrasound
- CT scanner
- MRI

XX
- Intra-oral sensor
- Micro camera endoscopy
- Intra-oral detector
- Chip to the tip endoscope
- Portable ultrasound
- Photo-counting CT

XXI
- GE – PET/CT
- Siemens 7T MRI

Sensor

1920
- PM tubes
- Analogue X-ray film

1980
- CCD

1990
- CMOS

2005
- SiPM
- CdTe-based technologies
- Micro camera endoscopy

2015
- TFT IGZO
- cMUT

Semiconductor technologies

2018
- GE flexible MR coils
<table>
<thead>
<tr>
<th>Main contrast</th>
<th>Advantages</th>
<th>Drawbacks</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-ray (radiography + CT scan)</td>
<td>• High-density tissue</td>
<td>• Expensive • Not widely available • Slow</td>
</tr>
<tr>
<td>MRI</td>
<td>• Soft tissue</td>
<td>• Expensive • Not widely available • Slow</td>
</tr>
<tr>
<td>Ultrasound</td>
<td>• Echogenic tissue</td>
<td>• Expensive • Not widely available • Slow</td>
</tr>
<tr>
<td>Molecular imaging</td>
<td>• Contrast agent with specific targets</td>
<td>• Radiation exposure • Very expensive • Not widely available</td>
</tr>
<tr>
<td>Endoscopy</td>
<td>• Video of visible tissue</td>
<td>• Radiation exposure • Very expensive • Not widely available</td>
</tr>
<tr>
<td>OCT</td>
<td>• Low depth soft tissue</td>
<td>• Can be invasive (inside a hole/cavity/surgery) • Issues with sterility</td>
</tr>
</tbody>
</table>

Advantages
- **X-ray**
 - High-density tissue
 - Widely available
 - Very high contrast on high-density tissue
 - “See through” imaging
 - 3D available
- **MRI**
 - Soft tissue
 - Very high contrast in soft tissue
 - Versatile (multiple different sequences for multiple contrasts)
 - “See through” imaging
 - 3D available
- **Ultrasound**
 - Echogenic tissue
 - Cheap
 - Widely available
 - “See through” imaging
 - 3D available
- **Molecular imaging**
 - Contrast agent with specific targets
 - Versatile
 - Highly sensitive
 - “See through” imaging
 - 3D available
- **Endoscopy**
 - Video of visible tissue
 - Cheap
 - Widely available
 - Fast
- **OCT**
 - Low depth soft tissue
 - Versatile
 - High sensitivity
 - OCT-A
 - View in-depth
 - Miniaturization

Drawbacks
- **X-ray**
 - Radiation exposure
- **MRI**
 - Expensive
 - Not widely available
 - Slow
- **Ultrasound**
 - Expensive
 - Not widely available
 - Slow
- **Molecular imaging**
 - Radiation exposure
 - Very expensive
 - Not widely available
- **Endoscopy**
 - Expensive
- **OCT**
 - Low depth (intravascular)

X-ray is well-positioned in the medical imaging landscape as a “see-through” imaging modality that is widely available and offers a very high contrast on high-density tissue. However, other modalities (e.g. MRI) are taking some CT-scan share in the 3D area because MRI is a non-invasive technique that does not require radiation exposure and offers excellent resolution.
WHAT IS SOLID-STATE?

Technology transformation

In this report, « solid-state » refers to electronic components, devices, and systems based on semiconductor and IC processes.
X-RAY TECHNOLOGY - COMMERCIAL ROADMAP

CCD – Image intensifier
- Improved quality
- Digitalization

a-Si flat panels
- Lower cost
- Higher integration

a-Se
- Direct conversion

CMOS flat panels
- Lower dose
- Higher speed and resolution

IGZO
- Better cost efficiency
- Lower noise

Photon counting
- Spectral imaging
- High image quality

- **Performance**
- **Time**
- **Year of market introduction**
- **1980s**
- **2010s**
- **2021**
- **2024**
ENDOSCOPY ROADMAP

Reusable fiberscopes for rigid and flexible endoscopy

Reusable videoscopes for rigid and flexible endoscopy

Capsule endoscopy

Disposable endoscopy for specific applications (small diameter and difficult to decontaminate)

Disposable endoscopy widely spread in terms of applications (going for gastroenterology) and technologies (rigid and flexible endoscopes)

Fiberoptic image guides: key enablers for fiberscopes, will gradually disappear

Camera modules: key enablers for videoscopes but will be replaced by disposable products

Very small camera modules with high volume production capabilities: key enablers for disposable products

Status of Medical Imaging Equipment and Detectors 2020 | Sample | www.yole.fr | ©2020
The development of solid-state sensors, especially SiPM, has enabled the combination of PET with MR.

Initial PET scans were standalone machines... ... rapidly, PETs were combined with CT scanners... ... thanks to solid-state sensors, PET/MR was made possible.

PMT has had a wide use in molecular imaging

Solid-state (SiPM, APD, CZT...)

Solid state sensors have seen a rapid adoption as they add benefits such as MR compatibility

Thanks to the development of CZT, SPECT systems are transitioning from PMT to solid-state
Successive technologies developed that now coexist.

- **Bulk Piezoelectric – PZT ceramic**
 - Conventional technology for ultrasonography

- **Bulk Piezoelectric – PZT ceramic**
 - Next generation technology for ultrasonography targeting high sensitivity applications

- **cMUT technology**
 - Unveiled in 2009 for ultrasonography cart based. New generation cMUT unveiled in 2017 for point of care imaging

- **pMUT technology**
 - To be commercialized in 2021 – 2022 for medical and consumer healthcare applications
There is a market for OCT outside the specialist’s office. Systems can be installed at retail stores or optician’s shops, or even directly in a patient's home.

- Better disease monitoring
- Free up ophthalmologists’ waiting lists
- Better monitoring of drug effectiveness by pharmaceutical companies

However, the product must have a good cost to performance ratio.

USA: As of 1st July 2020, the CPT (0604T) has registered OCT for home applications.
MAGNETIC RESONANCE IMAGING (MRI) - POINT OF CARE MRI

New developments in small MRI

Point of care MRIs were a trend a decade ago which ultimately failed. However, we now see a new revival of such products.

Hyperfine and Aspect imaging offer POC systems. It was apparently a trend a few years back but now the big players have gone to bigger, not smaller. This does leave a niche market in the order of tens of million $ for small players such as these start-ups.
HYBRIDIZATION
Toward multimodalities for better diagnosis

What are the drivers for the development of multimodality:

• First the application itself. For instance, the combination of PET and CT scanners allows a complementary acquisition and therefore offers more accurate diagnostic information.

• The second is the available technology. Indeed, in the case of PET/MR, this was made possible thanks to the development of high magnetic field compatible sensors such as SiPM.

• The third is the availability of two or more complementary technologies. In the case of catheter based intravascular diagnosis, the use of IVUS allowed to image the tissue in depth. Adding OCT for intravascular complements what IVUS can image. In some cases, it is even possible to combine both technologies to take advantage of both worlds.
TOWARD HIGH VOLUMES MARKETS IN MEDICAL IMAGING

Semiconductor technologies are key enablers of this market transformation

2 different roads to reach high volume markets: disposable products and point of care devices.

Disposable products (Endoscopy)

- **Drivers**: disinfection, availability, efficiency
- This means 1 procedure = 1 product : High volume market

Point of care devices (Ultrasound and OCT)

- **Drivers**: availability, affordability
- Today, OCT and ultrasound systems are bulky and necessitate specialists to handle them. Point of care systems are targeting non specialists and widespread usability (nurse’s office, optician, home, etc.)

Key enabler:
Low cost/high volume production of camera modules

Key enabler:
Low cost/high volume production of micromachined ultrasound transducers (cMUT/pMUT)

Handheld ultrasound to replace stethoscopes?
MARKET DATA AND FORECASTS

Some definitions

The data is expressed as follows:
- By volume (units)
- By market value ($M)

Detector/module/camera

X-ray detector = sensor + scintillator (if needed) + ASIC

Endoscopy camera module = image sensor + optics + ASIC

Sensor

e.g.: a-Si flat-panel detector, CMOS intraoral detector, ultrasound transducer, SiPM

Sensor

e.g.: CMOS image sensor, photodiodes
MEDICAL IMAGING EQUIPMENT LANDSCAPE

Yearly global spending*

<table>
<thead>
<tr>
<th>Spatial resolution</th>
<th>Endoscopy $6B</th>
<th>X-ray $17B</th>
<th>MRI $5B</th>
<th>Molecular Imaging $3B</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 µm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 µm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 µm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 nm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No depth</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 mm</td>
<td>OCT $1B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 cm</td>
<td>Ultrasound $6B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 m</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Equipments only, service and consumables not included
Medical imaging, a global market worth $38B with four main players.
DETECTORS FOR MEDICAL IMAGING EQUIPMENT MARKET
By Modalities (in $M)

- **X-ray**
 - 2019: $2.3B
 - CAGR 19-25: +7.3%
 - 2025e: $6.6B

- **Ultrasound**
 - 2019: $0.3B
 - CAGR 4%
 - 2025e: $0.6B

- **Endoscopy**
 - 2019: $0.2B
 - CAGR 14%
 - 2025e: $3M

- **Molecular Imaging**
 - 2019: $0.3B
 - CAGR 16%
 - 2025e: $6M

- **OCT**
 - 2019: $0.3B
 - CAGR 14%
 - 2025e: $3.7B

- **Other**
 - 2019: $0.2B
 - CAGR 8%
 - 2025e: $2B

Status of Medical Imaging Equipment and Detectors 2020 | Sample | www.yole.fr | ©2020
MARKETS TRENDS

Examples of slides
Artificial Intelligence for Medical Imaging 2020

X-Ray Detectors for Medical, Industrial and Security Applications 2019

BioMEMS Market and Technology 2020
OmniVision’s OVM6948 CameraCubeChip

Butterfly Network iQ CMUT Sensor
REPORTS, MONITORS & TRACKS

India and RoA
Takashi Onozawa - takashi.onozawa@yole.fr
+81 80 4371 4887

Greater China
Mavis Wang - mavis.wang@yole.fr
+886 979 336 809 +86 136 6156 6824

Korea
Peter Ok - peter.ok@yole.fr
+82 10 4089 0233

Japan
Miho Ohtake - mih.ohtake@yole.fr
+81 34 4059 204

Japan and Singapore
Itsuyo Oshiba - itsuyo.oshiba@yole.fr
+81 80 3577 3042

Japan
Toru Hosaka - toru.hosaka@yole.fr
+81 90 1775 3866

FINANCIAL SERVICES

› Jean-Christophe Eloy - eloy@yole.fr
 +33 4 72 83 01 80

› Ivan Donaldson - ivan.donaldson@yole.fr
 +1 208 850 3914

CUSTOM PROJECT SERVICES

› Jérome Azémar, Yole Développement - jermoe.azemar@yole.fr
 +33 6 27 68 69 33

› Julie Coulon, System Plus Consulting - jcoulon@systemplus.fr
 +33 2 72 17 89 85

GENERAL

› Camille Veyrier, Marketing & Communication - camille.veyrier@yole.fr
 +33 472 83 01 01

› Sandrine Leroy, Public Relations - sandrine.leroy@yole.fr
 +33 4 72 83 01 89

› General inquiries - info@yole.fr
 +33 4 72 83 01 80

Follow us on

LinkedIn Twitter YouTube Facebook Instagram