Lithium-ion Battery Recycling Market & Technology Trends 2020

Market and Technology Report 2020
ABOUT THE AUTHORS

Biographies & contacts

Dr. Shalu AGARWAL

Shalu Agarwal, PhD. is an Analyst specializing in Power Electronics & Materials at Yole Développement (Yole). Shalu is engaged in the development of technology & market reports as well as the production of custom consulting studies, within the Power & Wireless division. She has more than 10 years’ experience in electronic material chemistry. Before joining Yole, Shalu worked as a Project Manager and Research Professor in the fields of electronic materials, batteries, and inorganic chemistry. Shalu received her master’s and Ph.D. degree in Chemistry from the Indian Institute of Technology (IIT) Roorkee, India.

E-mail: shalu.agarwal@yole.fr

Dr. Milan ROSINA

Dr. Milan Rosina is Principal Analyst, Power Electronics & Batteries, at Yole Développement (Yole), within the Power & Wireless division. Milan has 20 years of scientific, industrial, and managerial experience in equipment and process development. He also has experience in due diligence, technology, and market surveys in the fields of renewable energies, EV/HEV, energy storage, batteries, power electronics, thermal management, and innovative materials and devices. Dr. Rosina received his Ph.D. degree from National Polytechnical Institute (Grenoble, France). He previously worked for the Institute of Electrical Engineering in Slovakia; Centrotherm in Germany; Fraunhofer IWS in Germany; CEA LETI in France; and French utility company ENGIE.

E-mail: milan.roseina@yole.fr
• Glossary and definition 2
• EV/HEV classification and terms used in this report 3
• Table of contents 4
• Report objectives 8
• Report scope 9
• Report methodology 10
• About the authors 11
• Companies cited in this report 12
• Who should be interested by this report 13
• Yole Group related reports 14
• Executive Summary 15
• Context 70
 o Battery types
 o Li-ion battery – composition
 o What is Li-ion battery recycling and why it is important
• Market forecasts 75
 o Market segmentation and methodology
 o Li-ion battery recycling market shares
 o 2019 – 2025 evolution of rechargeable Li-ion battery market
 o COVID-19 impact on the market market
 o 2019-2025 total end-of-life Li-ion batteries Mrket- split by applications (in tons of cells/year)
 o 2019-2040 total end-of-life Li-ion batteries - split by applications (in tons of cells/year)
 o 2019-2025 Li-ion batteries recycling market - split by applications (in tons of cells/year)
 o 2019-2040 Li-ion batteries recycling market - split by applications (in tons of cells/year)
 o 2019-2025 Li-ion battery recycling market (in tons of cells/year) - comparison of share evolution of different applications on recycling market
 o 2019-2025 Li-ion battery recycling market (in tons of cells/year) – consumer goods
 o 2019-2025 consumer goods Li-ion battery recycling market (in tons of cells/year)- comparison of the share of manufacturing scrap and end-of-life batteries in recycling market
 o 2019-2025 Li-ion battery recycling market (in tons of cells/year) – e-mobility
 o 2019-2025 e-mobility’s Li-ion battery recycling market (in tons of cells/year)- comparison of the share of manufacturing scrap and end-of-life batteries in recycling market
 o Li-ion battery recycling – share of manufacturing scrap on battery recycling market
 o 2019-2025 Li-ion battery recycling market (in tons of cells/years) - Split by battery chemistries
 o 2019-2025 value of raw materials present in end-of-life Li-ion batteries (in $ million)
 o 2019-2040 value of raw materials present in end-of-life Li-ion batteries (in $ million)
 o 2019-2025 value of raw materials present in Li-ion batteries going for recycling (in $ million)
 o 2019-2025 value of raw materials present in Li-ion batteries going for recycling (in $ million)
Comments about market figures
- Market figures – take away

Market trends
- Main battery applications market trends
- How is Li-ion battery demand growing?
- Main battery market drivers, by application
- Consumer electronics
- Stationary storage application
 - Benefits of battery for stationary battery applications
- Electric mobility
 - EV/HEV classification
 - EV/HEV market drivers
 - What will be the impact of growing PHEV/BEV fleet?
 - EV/HEV influence on other Applications
 - Electric and hybrid-electric buses
 - Electric trucks
- Impact of growing Li-ion battery volume on waste problem
- Li-ion battery life time per application
- Time difference between production and recycling battery volumes
- Global EV battery recycling market - top impacting factors
- Main drivers for Li-ion battery recycling
- Market trend – take away

Supply chain
- Numerous players can find opportunities in the Li-ion battery recycling business
- Raw material availability
- Li-ion battery raw material suppliers – cobalt
- Cobalt - supply chain flow
- Li-ion battery raw material suppliers – lithium
- Lithium resources and applications
- Raw Material Availability
 - Main countries and companies dominating Li-ion battery raw material supply
 - Factors influencing raw material impact on the LiIB market and supply chain
- Li-ion battery cell manufacturers – geographic location
- Battery pack suppliers - geographic location
- Battery integrators - consumer electronics
- Battery integrators - cordless tools
- Stationary battery applications - supply chain overview
- Li-ion battery recycling companies – geographic overview
- Recycling companies and their Li-ion batteries’ recycling capacity
- Li-ion battery recycling companies - recycling processes
- Transportation and Packaging solutions for end-of-life Li-ion batteries
- Recycling of Lithium Ion Battery - Process Flow
- Recycling of Li-ion battery – companies positioning
- Recycling of Li-ion battery – companies positioning – take away
- Recycling of electric vehicles batteries
- Electric and hybrid electric vehicles manufacturers
- Electric truck manufacturers – geographic overview
- Electric bus manufacturers – geographic overview
TABLE OF CONTENTS

Part 3/4

- Two options for end-of-life EV batteries
 - Recycling directly or reuse (second-life) first?
 - Option 1 for end-of-life EV batteries - recycling process of EV batteries
 - Companies involved in EV batteries recycling
 - Which recycling company is recycling EV batteries also?
 - Why not all recycling companies are recycling EV batteries?
 - Li-ion battery recycling supply chain
 - Li-ion battery recycling supply chain movement - partnerships
 - Li-ion battery recycling supply chain movement - Joint ventures
 - Li-ion battery recycling supply chain movement - Merger and Acquisition
 - Li-ion battery recycling supply chain movement – take away
 - Options 2 for end-of-life EV batteries - second-life before recycling
 - Companies involved in second-life battery applications
 - Second-Life Battery partnerships
 - Second-life battery - supply chain trends
 - Second-life battery Projects
 - How EV batteries are affecting Li-ion battery recycling business?
 - Supply chain - take away

Technology trends

- Battery cell technology trends – cathode
- Battery cell trends – cell size, design, and formats
- Battery cell improvement approaches
- From cell to module and pack
- Battery pack components
- What are the main components of a battery pack?
- Battery voltage and energy capacity range in different applications
- Battery cell - Global trends
- Battery pack – global trends
- Take away

Technology trends - Lithium ion battery recycling

- What is Li-ion battery recycling and why it is important?
- Li-ion batteries - recycling process
- Li-ion batteries recycling - packaging of batteries
- Li-ion batteries recycling - transportation of batteries
- Li-ion batteries recycling - disassembly of large battery packs
- Disassembly methods of battery packs-manual and automated disassembly
- Disassembly of EV battery packs – challenges
- Battery pack disassembly/ dismantling methods - technical trend
- Li-ion batteries recycling -chemical processes
- Li-ion battery recycling process - hydrometallurgical method
- Advantages and disadvantages of pyrometallurgical and Hydrometallurgical process
- Which chemical process is the best for recycling?

Lithium-ion battery recycling market & technology trends 2020 | Sample | www.yole.fr | ©2020
TABLE OF CONTENTS

Part 4/4

- Lifecycle of a battery pack
- Second-life batteries
- Second-life battery - drivers and challenges
- Second-life applications - trends
- What is the better option for EV batteries?
- Safety issues with Li-ion batteries recycling
- Li-ion battery recycling – challenges
- Recycling of Electric vehicle’s batteries – challenges
- Technology trend - take away

• Take away and outlook 220
 - Li-ion battery applications
 - Li-ion battery’s raw material availability
 - Take away - market figures
 - Take away - supply chain
 - Take away - technology trend
 - Conclusion
 - Outlook - to watch closely in future
COMPANIES CITED IN THIS REPORT

Lithium-ion battery recycling market & technology trends 2020 | Sample | www.yole.fr | ©2020
• Provide the market value (in $million) of raw materials and market size (in tons/year) for rechargeable lithium-ion (Li-ion) batteries recycling use for consumer goods, e-mobility, stationary storage, and other applications.

• Demonstrate the strong, consistently-growing business potential for Li-ion battery recyclers and players involved in Li-ion batteries’ second-life applications.

• Provide the Li-ion battery recycling supply chain landscape, including the key players for battery cells, battery packs, Li-ion battery recycling, and associated business models.

• Discuss market opportunities for players that can pack and transport the end-of-life batteries.

• Provide insight into different Li-ion cell technologies, related technology trends and their impact on battery recycling market.

• Analyze different Li-ion battery recycling technologies.
• Li-ion batteries find many applications in
 • Smart consumer electronics (mobile phones, smart watch, tablets, laptops…)
 • Clean and local energy generation (PV, wind) and their integration with the electricity grid,
 • Electricity grid stabilization and energy back-up for industrial and home applications,
 • Electric mobility (electric and hybrid electric vehicles, electric trucks and buses) as well as in related charging infrastructure.
 • New applications like cordless power tools, drones…

• Li-ion batteries in electric vehicles become an integral part of “Internet of Energy” concept with optimized generation/distribution/storage and consumption of electricity.

Application trends of Li-ion batteries applications
Source: Yole Développement
Rise of Li-ion batteries could leave us with a big battery waste problem.
LI-ION BATTERY MARKET VOLUME IS GROWING
…and the demand for recycling too!

Growing EV/HEV market will result in a huge volume of batteries to be recycled.

High manufacturing volumes (units) and growing share of Li-ion batteries + Growing battery energy capacity per end application = Growing volume of batteries to be recycled.
As EV market is new, most of the EV batteries are still enjoying their first life. Therefore, there is a time delay of a few years before battery demand and demand for battery recycling. Better opportunities for battery recycling companies are coming due to EV batteries.

Volume of produced batteries

Historical market for LIB for consumer applications, production scrap, etc.

Volume of batteries to be recycled

Timeline

5-8 years

We are here: huge battery market (consumer, EV…) but still relatively low demand for recycling
SUPPLY CHAIN ANALYSIS

LI-ION BATTERY RECYCLING COMPANIES – GEOGRAPHIC OVERVIEW

RECYCLING COMPANIES AND THEIR LI-ION BATTERIES' RECYCLING CAPACITY

BATTERY RECYCLING SUPPLY CHAIN MOVEMENT

SECOND-LIFE BATTERY PROJECTS
LI-ION BATTERY - GENERAL RECYCLING PROCESS

All process steps shown are rarely realized by just one company

Collection and transportation of end-of-life batteries and battery waste

Primary sorting of batteries (i.e. alkaline battery, NiCd, NiMH, Li-ion)

Large battery-pack neutralization and dismantling

Removing the combustible material (plastics and insulation) with a gas-fired thermal oxidizer, leaving clean cell

Crushing, solvent removal, and mechanical separation

Chemical separation & refining

Here is the strongest know-how related to battery recycling

Raw materials

→ Sold to battery cell makers

→ Used internally for electrode manufacturing (integrated company)

Good cells and materials (cable, connectors, casing, cooling plates and liquids, etc.) can be re-used in second-life batteries

Some substances are burned off, leaving a black mass on top that a slag arm removes

- Manual process realized by trained operators

Same for recycling and second-life batteries

Simplified schematic of the Li-ion battery recycling process, also showing synergies with second-life batteries

source: Yole Développement

The actual process may vary depending on cell chemistry and the chemical separation process used

source: Yole Développement

Lithium-ion battery recycling market & technology trends 2020 | Sample | www.yole.fr | ©2020
TECHNOLOGY TRENDS

RECYCLING OF ELECTRIC VEHICLE’S BATTERIES - CHALLENGES

- Recycling the inactive battery from an EV (electric vehicle) is a challenging task.
- Transportation of EV batteries:
 - from EVs to recycling plants
 - from recycling plants to secondary users
- Lithium-ion battery recycling: a complex and expensive process.

Disassembly

- Electric vehicle battery packs are assembled into different cells, thus making it difficult to develop standard recycling methods.
- Different battery packs possess very different physical configurations, requiring different approaches for disassembly.
- The purpose of disassembly is to develop automated disassembly processes.

Recycling process

- Lithium-ion batteries are a source of potential energy, making it difficult to recycle them.
- Recyclers must develop standard recycling methods.

WHICH CHEMICAL PROCESS IS THE BEST FOR RECYCLING?

Pyrometallurgical process or hydrometallurgical process?

- Pyrometallurgical process is not sufficient to get pure metals from the mixture of end-of-life batteries.
- Both the processes have their advantages and disadvantages.

A combined pyro-hydrometallurgical process may be preferable due to two reasons:
- Pyro treatment avoids the disadvantages of scaling issues linked to the different scales of pyrometallurgical processes and their lower output.
- Pyro treatment can be used for the separation and the treatment of the different materials present in the slag received after pyro treatment to get pure metals.

LI-ION BATTERIES RECYCLING - TRANSPORTATION OF BATTERIES

- Transportation of the end-of-life batteries from their last user to the collection site.
- Transportation of the collection site batteries from the collection sites to the battery recycling plants.
- Transportation of recovered materials from the battery recycling plants to the material users (phosphate plants/battery manufacturers).

- Transportation mode for each of the transportation segment (depends on the weight, distance...):
 - medium-duty truck, heavy-duty truck, ship...

BATTERY PACK DISASSEMBLY/ DISMANTLING METHODS - TECHNICAL TREND

- Battery packs assembly is an optimized and efficient process. However, these battery packs are not easy to disassemble.
- Battery packs are not designed for easy dismantling. There are strict standards for design and production methods.
- Automated dismantling methods can have many benefits. However, the battery manufacturers should be identified to battery pack design and easy to form equipment.
- Dismantling of battery packs is done primarily today.
- There is a need for the help of dismantling robots and robotic systems (semi-automated). Fully automated dismantling is not yet possible in the current years.

SECOND-LIFE APPLICATIONS - TREND

- Second-life batteries represent an additional added value for end-of-life EV/HEV batteries.
- As the number of EVs increases, the second-life applications are becoming more and more. More and more EVs should go for second-life applications instead of being recycled.
- However, currently, the number of EVs is marginal, and most of them are not reached end-of-life. Therefore, the question about the real trend of second-life applications is still pending and will only unfold when their producers through the actual practice of recycling and second-life applications of EV batteries.
YOLE GROUP RELATED REPORTS

Yole Développement

Status of Rechargeable Li-ion Battery Industry 2019

Power Electronics for Electric & Hybrid Electric Vehicles 2020

Li-ion Battery Packs for Automotive and Stationary Storage Applications 2020
CONTACTS

Western US & Canada
Steve Laferriere - steve.laferriere@yole.fr
+1 310 600 8267

Eastern US & Canada
Chris Youman - chris.youman@yole.fr
+1 919 607 9839

Europe and RoW
Lizzie Levenez - lizzie.levenez@yole.fr
+49 15 123 544 182

Benelux, UK & Spain
Marine Wybranietz - marine.wybranietz@yole.fr
+49 69 96 21 76 78

FINANCIAL SERVICES
› Jean-Christophe Eloy - eloy@yole.fr
 +33 4 72 83 01 80
› Ivan Donaldson - ivan.donaldson@yole.fr
 +1 208 850 3914

CUSTOM PROJECT SERVICES
› Jérome Azémar, Yole Développement - jerome.azemar@yole.fr
 +33 6 27 68 69 33
› Julie Coulon, System Plus Consulting - jcoulon@systemplus.fr
 +33 2 72 17 89 85

REPORTS, MONITORS & TRACKS
India and RoA
Takashi Onozawa - takashi.onozawa@yole.fr
+81 80 4371 4887

Greater China
Mavis Wang - mavis.wang@yole.fr
+86 979 336 809 +86 136 6156 6824

Korea
Peter Ok - peter.ok@yole.fr
+82 10 4089 0233

Japan
Miho Ohtake - miho.ohtake@yole.fr
+81 34 4059 204

Japan and Singapore
Itsuyo Oshiba - itsuyo.oshiba@yole.fr
+81 80 3577 3042

Genaral
Camille Veyrier, Marketing & Communication
camille.veyrier@yole.fr - +33 472 83 01 01

Sandrine Leroy, Public Relations
sandrine.leroy@yole.fr - +33 4 72 83 01 89

General inquiries: info@yole.fr - +33 4 72 83 01 80

Follow us on